Capabilities and limits of radiocarbon dating with a focus on untypical archaeological samples


  • Jarmila Bíšková Ústav jaderné fyziky AV ČR, Hlavní 130, 250 68 Husinec, CZ-260 68 Řež, Czech Republic; Ústav archeologie a muzeologie, Filozofická fakulta, Masarykova univerzita, Czech Republic
  • Veronika Brychová Ústav jaderné fyziky AV ČR, Hlavní 130, 250 68 Husinec, CZ-260 68 Řež, Czech Republic
  • Peter Demján Archeologický ústav AV ČR, Letenská 123/4, CZ-118 01 Praha, Czech Republic
  • Dagmar Dreslerová Archeologický ústav AV ČR, Letenská 123/4, CZ-118 01 Praha, Czech Republic
  • Alžběta Frank Danielisová Archeologický ústav AV ČR, Letenská 123/4, CZ-118 01 Praha, Czech Republic
  • Kristýna Hošková Ústav jaderné fyziky AV ČR, Hlavní 130, 250 68 Husinec, CZ-260 68 Řež, Czech Republic; Přírodovědecká fakulta UK, Benátská 433/2, CZ-128 01 Praha, Czech Republic
  • David John Ústav jaderné fyziky AV ČR, Hlavní 130, 250 68 Husinec, CZ-260 68 Řež, Czech Republic
  • Nikola Koštová Archeologický ústav AV ČR, Letenská 123/4, CZ-118 01 Praha, Czech Republic
  • Petr Limburský Archeologický ústav AV ČR, Letenská 123/4, CZ-118 01 Praha, Czech Republic
  • Mihály Molnár Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research, Bem tér 18/C, Debrecen, H-4026, Hungary
  • Alice Moravcová Archeologický ústav AV ČR, Letenská 123/4, CZ-118 01 Praha; Přírodovědecká fakulta UK, Benátská 433/2, CZ-128 01 Praha, Czech Republic
  • Kateřina Pachnerová Brabcová Ústav jaderné fyziky AV ČR, Hlavní 130, 250 68 Husinec, CZ-260 68 Řež, Czech Republic
  • Markéta Petrová Ústav jaderné fyziky AV ČR, Hlavní 130, 250 68 Husinec, CZ-260 68 Řež, Czech Republic
  • Ivo Světlík Ústav jaderné fyziky AV ČR, Hlavní 130, 250 68 Husinec, CZ-260 68 Řež, Czech Republic
  • Jiří Šneberger Ústav jaderné fyziky AV ČR, Hlavní 130, 250 68 Husinec, CZ-260 68 Řež; Archeologický ústav AV ČR, Letenská 123/4, CZ-118 01 Praha, Czech Republic; Katedra genetiky a mikrobiologie, Přírodovědecká fakulta, Karlova Univerzita, Viničná 5, Praha 2, CZ-12843, Czech Republic; Západočeské muzeum v Plzni, Kopeckého sady 2, 301 00 Plzeň, Czech Republic
  • Josef Tecl Ústav jaderné fyziky AV ČR, Hlavní 130, 250 68 Husinec, CZ-260 68 Řež, Czech Republic
  • Vojtěch Valášek Ústav jaderné fyziky AV ČR, Hlavní 130, 250 68 Husinec, CZ-260 68 Řež, Czech Republic; Přírodovědecká fakulta UK, Benátská 433/2, CZ-128 01 Praha, Czech Republic



radiocarbon dating, lipids, charred bones, dental calculus, iron, mortar, pollen and phytolith concentrates


Radiocarbon dating is an established method that helps to determine the absolute age of archaeological finds. This topical review presents the basic principles of the radiocarbon method, conventions for selecting samples from archaeological contexts, how to handle samples before sending them to the radiocarbon laboratory, laboratory methods for sample preparation, the AMS measurement procedure, and the calibration of results. Factors that limit the results of radiocarbon dating, particularly radiocarbon plateaux and the reservoir effect, are explained along with the ways how to recognise and eliminate their influence. The main aim of the paper is to critically evaluate the application of radiocarbon dating to less common archaeological samples (lipids preserved in the pores of pottery, charred bone, dental calculus, iron objects and iron slags, mortar, pollen and phytolith concentrates extracted from sediments or soils). Their dating opens new possibilities for the chronological determination of past natural and cultural processes or events.


Download data is not yet available.


Addis A. – Secco M. – Marzaioli F. – Artioli G. – Chavarría Arnau A. – Passariello I. – Terrasi F. – Brogiolo G. P. 2019: Selecting the most reliable 14C dating material inside mortars: The origin of the Padua cathedral. Radiocarbon 61, 375–393. DOI:

Adler, C. J. – Dobney, K. – Weyrich, L. S. – Kaidonis, J. – Walker A. W. – Haak, W. – Bradshaw, C. J. – Townsend, G. – Soltysiak, A. – Alt, K. W. 2013: Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nature Genetics 45, 450–457. DOI:

Asscher, Y. – Weiner, S. – Boaretto, E. 2017: A new method for extracting the insoluble occluded carbon in archaeological and modern phytoliths: Detection of 14C depleted carbon fraction and implications for radiocarbon dating. Journal of Archaeological Science 78, 57–65. DOI:

Bayliss, A. – van der Plicht, J. – Bronk Ramsey, Ch. – McCormac, G. – Healy, F. – Whittle, A. 2011: Towards generational time scales: the quantitative interpretation of archaeological chronologies. In: A. Whittle – F. Healy – A. Bayliss (eds.), Gathering time. Dating of Early Neolithic enclosures of southern Britain and Ireland, Oxford, Oakville: Oxbow, 17–59. DOI:

Beaumont, W. – Beverly, R. – Southon, J. – Taylor, R. E. 2010: Bone preparation at the KCCAMS laboratory. Nuclear Instruments and Methods in Physics Research Section B 268, 906–909. DOI:

Bell, M. – P. J. Fowler, P. J. – Hillson, S. W. eds. 1996: The experimental earthwork project 1960–1992. (CBA Research report 100.) 1996. York: Council for British Archaeology.

Bentley, R. A. 2012: Mobility and the diversity of early Neolithic lives: Izotopic evidence from skeletons. Journal of Anthropological Archaeology 32, 303–312. DOI:

Berstan, R. – Stott, A. W. – Minnitt, S. – Ramsey, C. B. – Hedges, R. E. M. – Evershed, R. P. 2008: Direct dating of pottery from its organic residues: new precision using compound–specific carbon izotopes. Antiquity 82, 702–713. DOI:

Brock, F. – Bronk Ramsey, C. – Higham, T. 2007. Quality assurance of ultrafiltered bone dating. Radiocarbon 49, 187–192. DOI:

Brock, F. – Dee, M. – Hughes, A. – Snoeck, C. – Staff, R. – Ramsey, C. B. 2018: Testing the effectiveness of protocols for removal of common conservation treatments for radiocarbon dating. Radiocarbon 60, 35–50. DOI:

Bronk Ramsey, C. 1995: Radiocarbon calibration and analysis of stratigraphy: The OxCal program. Radiocarbon 37, 425–430. DOI:

Bronk Ramsey, C. 2009: Bayesian Analysis of Radiocarbon Dates. Radiocarbon 51, 337–360. DOI:

Bronk Ramsey, C. – Pettitt, P. – Hedges, R. – Hodgins, G. – Owen, D. C. 2000: Radiocarbon dates from the Oxford AMS system: Archaeometry datelist 30. Archaeometry 42, 459–479. DOI:

Brown, T. A. – Nelson, D. E. – Mathewes, R. W. – Vogel, J. S. – Southon, J. R. 1989: Radiocarbon Dating of Pollen by Accelerator Mass Spectrometry. Quaternary Research 32, 205–212. DOI:

Bruhn, F. – Duhr, A. – Grootes, P. – Mintrop, A. – Nadeau, M. 2001: Chemical Removal of Conservation Substances by “Soxhlet”–Type Extraction. Radiocarbon 43, 229–237. DOI:

Brychova, V. – Roffet–Salque, M. – Pavlu, I. – Kyselka, J. – Kyjakova, P. – Filip, V. – Svetlik, I. – Evershed, R. P. 2021: Animal exploitation and pottery use during the early LBK phases of the Neolithic site of Bylany (Czech Republic) tracked through lipid residue analysis. Quaternary International 574, 91–101. DOI:

Buck, C. E. – Juarez, M. 2017: Bayesian radiocarbon modelling for beginners (Version 1). arXiv.

Bull, I. D. – Elhmmali, M. M. – Roberts, D. J. – Evershed, R. P. 2003: The application of steroidal biomarkers to track the abandonment of a Roman wastewater course at the Agora (Athens, Greece). Archaeometry 45, 149–161. DOI:

Capuzzo, G. – Snoeck, C. – Boudin, M. – Dalle, S. – Annaert, R. et al. 2020: Cremation vs. Inhumation: modelling cultural changes in funerary practices from the mesolithic to the middle ages in Belgium using kernel density analysis on 14C data. Radiocarbon 62, 1809–1832. DOI:

Cardon, D. 2007: Natural dyes: sources, tradition, technology and science. London: Archetype.

Carter, V. A. – Bobek, P. – Moravcová, A. – Šolcová, A. – Chiverrell, R. C. et al. 2020: The role of climate–fuel feedbacks on Holocene biomass burning in upper–montane Carpathian forests. Global and Planetary Change 193, 103264. DOI:

Casanova, E. – Knowles, T. – Bayliss, A. – Dunne, J. – Barański, M. et al. 2020a: Accurate compound–specific 14C dating of archaeological pottery vessels. Nature 580, 506–510. DOI:

Casanova, E. – Knowles, T. D. – Ford, C. – Cramp, L. J. – Sharples, N. – Evershed, R. P. 2020b: Compound–specific radiocarbon, stable carbon izotope and biomarker analysis of mixed marine/terrestrial lipids preserved in archaeological pottery vessels. Radiocarbon 62, 1679–1697. DOI:

Casanova, E. – Knowles, T. – Williams, C. – Crump, M. – Evershed, R. 2017: Use of a 700 MHz NMR microcryoprobe for the identification and quantification of exogenous carbon in compounds purified by preparative capillary gas chromatography for radiocarbon determinations. Analytical Chemistry 89, 7090–7098. DOI:

Casanova, E. – Knowles, T. D. J. – Williams, C. – Crump, M. P. – Evershed, R. P. 2018: Practical considerations in high–precision compound–specific radiocarbon analyses: Eliminating the effects of solvent and sample cross–contamination on accuracy and precision. Analytical Chemistry 90, 11025–11032. DOI:

Cook, A. C. – Southon, J. R. – Wadsworth, J. 2003: Using radiocarbon dating to establish the age of iron–based artifacts. The Journal of The Minerals, Metals and Materials Society 55, 15–22. DOI:

Corr, L. T. – Richards, M. P. – Jim, S. – Ambrose, S. H. – Mackie, A. – Beattie, O. – Evershed, R. P. 2008: Probing dietary change of the Kwädąy Dän Ts'ìnchį individual, an ancient glacier body from British Columbia: I. Complementary use od marine lipid biomarker and carbon izotope signatures as novel indicators of a marine diet. Journal of Archaeological Science 35, 2102–2110. DOI:

Craddock, P. T. – Wayman, M. L. – Jull, A. J. T. 2002: The Radiocarbon Dating and Authentication of Iron Artifacts. Radiocarbon 44, 717–732. DOI:

Cresswell, R. G. 1992: Radiocarbon dating of iron artifacts. Radiocarbon 34, 898–905. DOI:

Davis, J. T. – Sparks, D. 1971: Assimilation of 14CO2 by Catkins of Carya illinoensis and Apparent Translocation to the Pollen. American Journal of Botany 58, 932–938. DOI:

De La Fuente, C. – Flores, S. – Moraga, M. 2013: DNA from human ancient bacteria: a novel source of genetic evidence from archaeological dental calculus. Archaeometry 55, 767–778. DOI:

Devièse, T. – Comeskey, D. – McCullagh, J. – Bronk Ramsey, C. – Higham, T. 2018: New protocol for compound–specific radiocarbon analysis of archaeological bones. Rapid Communications in Mass Spectrometry 32, 373–379. DOI:

Dobney, K. – Brothwell, D. 1987: A method for evaluating the amount of dental calculus on teeth from archaeological sites. Journal of Archaeological Science 14, 343–351. DOI:

Eglinton, T. I. – Aluwihare, L. I. – Bauer, J. E. – Druffel, E. R. M. – McNichol, A. P. 1996: Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating. Analytical Chemistry 68, 904–912. DOI:

Eglinton, T. I. – Benitez–Nelson, B. C. – Pearson, A. – McNichol, A. P. – Bauer, J. E. – Druffel, E. R. 1997: Variability in radiocarbon ages of individual organic compounds from marine sediments. Science 277, 796–799. DOI:

Evershed, R. P. 2008: Organic residue analysis in archaeology: The archaeological biomarker revolution. Archaeometry 50, 895–924. DOI:

Fernandes, R. – Bergemann, S. – Hartz, S. – Grootes, P. M. – Nadeau, M. – Melzner, F. – Rakowski, A. – Hüls, H. 2012: Mussels with Meat: Bivalve Tissue–Shell Radiocarbon Age Differences and Archaeological Implications. Radiocarbon 54, 953–965. DOI:

Fernandes, R. – Rinne, C. – Nadeau, M – Grootes, P. M. 2014: Towards the use of radiocarbon as a dietary proxy: Establishing a first wide-ranging radiocarbon reservoir effects baseline for Germany. Environmental Archaeology, 21, 285–294. DOI:

Fletcher, W. J. – Zielhofer, C. – Mischke, S. – Bryant, C. – Xu, X. – Fink, D. 2017: AMS radiocarbon dating of pollen concentrates in a karstic lake system. Quaternary Geochronology 39, 112–123. DOI:

Folch, J. – Lees, M. – Sloane Stanley, G. H. 1957: A simple method for the isolation and purification of total lipids from animal tissues. Journal of biological Chemistry 226, 497–509. DOI:

Fülöp, R. H. – Heinze, S. – John, S. – Rethemeyer, J. 2013: Ultrafiltration of bone samples is neither the problem nor the solution. Radiocarbon 55, 491–500. DOI:

Gassmann, G. – Schäfer, A. 2018: Doubting radiocarbon dating from in–slag charcoal: five thousand years of iron production at Wetzlar–Dalheim?. Archeologické rozhledy 70, 309–327. DOI:

Gauthier, M. 2022: Using Radiocarbon Ages on Organics Affected by Freshwater – A Geologic and Archaeologic Update on the Freshwater Reservoir Ages and Freshwater Diet Effect in Manitoba, Canada. Radiocarbon 64, 253–264. DOI:

Gupta, S. K. – Polach, H. A. 1985: Radiocarbon dating practises at ANU. Canberra: Australian National University.

Haas, M. – Bliedtner, M. – Borodynkin, I. – Salazar, G. – Szidat, S. – Eglinton, T. I. – Zech, R. 2017: Radiocarbon dating of leaf waxes in the loess–paleosol sequence kurtak, central siberia. Radiocarbon 59, 165–176. DOI:

Hajdas, I. – Michczynski, A. – Bonani, G. – Wacker, L. – Furrer, H. 2009: Dating bones near the limit of the radiocarbon dating method: study case mammoth from Niederweningen, Zh Switzerland. Radiocarbon 51, 675–680. DOI:

Hardy, K. – Blakeney, T. – Copeland, L. – Kirkham, J. – Wrangham, R. – Collins, M. 2009: Starch granules, dental calculus and new perspectives on ancient diet. Journal of Archaeological Science 36, 248–255. DOI:

Harkins K. M. – Stone A. C. 2015: Ancient pathogen genomics: insights into timing and adaptation. Journal of Human Evolution 79, 137–149. DOI:

Heaton, T. J. – Köhler, P. – Butzin, M. – Bard, E. – Reimer, R. W. et al. 2020: MARINE20 – the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820. DOI:

Henry, A. G. – Brooks, A. S. – Piperno D. R. 2011: Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraque; Spy I and II, Belgium). PNAS 108, 486–491. DOI:

Higham, T. – Ramsey, C. B. – Karavanic, I. – Smith, F. H. – Trinkaus, E. 2006: Revised direct radiocarbon dating of the Vindija G1 Upper Paleolithic Neandertals. PNAS 103, 553–557. DOI:

Hillson, S. W. 1996: Dental Anthropology. Cambridge: Cambridge University Press. DOI:

Hodson, M. J. 2018: Phytoliths in archaeology: chemical aspects. In: C. Smith (ed.), Encyclopedia of Global Archaeology. Cham: Springer. DOI:

Hodson, M. J. 2019: The relative importance of cell wall and lumen phytoliths in carbon sequestration in soil: a hypothesis. Frontiers in Earth Science 7, 167. DOI:

Hofreiter, M. – Sneberger, J. – Pospisek, M. – Vanek, D. 2021: Progress in forensic bone DNA analysis: Lessons learned from ancient DNA. Forensic Science International: Genetics 54, 102538. DOI:

Hopkins, R. J. A. – Hajdinjak, M. – Šefčáková, A. – Comeskey, D. – Devièse, T. – Higham, T. F. G. 2022: Single amino acid radiocarbon dating of two Neanderthals found at Šaľa (Slovakia). Radiocarbon 64, 87–100. DOI:

Hua, Q. – Turnbull, J. C. – Santos, G. M. – Rakowski, A. Z. – Ancapichún, S. – De Pol-Holz, R. – Hammer, S. – Lehman, S. – Levin, I. – Biller, J. B. 2021: Atmospheric radiocarbon for the period 1950–2019. Radiocarbon 64, 723–745. DOI:

Hüls, C. M. – Petri, I. – Föll, H. 2019: Absolute Dating of Early Iron Objects from the Ancient Orient: Radiocarbon Dating of Luristan Iron Mask Swords. Radiocarbon 61, 1229–1238. DOI:

Hüls, C. M. – Erlenkeuser, H. – Nadeau, M. J. – Grootes, P. M. – Andersen, N. 2010: Experimental Study on the Origin of Cremated Bone Apatite Carbon. Radiocarbon 52, 587–599. DOI:

Hüls, C. M. – Grootes, P. M. – Nadeau, M.-J. – Bruhn, F. – Hasselberg, P. – Erlenkeuser, H. 2004: AMS radiocarbon dating of iron artefacts. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 223, 709–715. DOI:

Ingalls, A. E. – Pearson, A. 2005: Compound–specific radiocarbon analysis. Oceanography 18, 19–31. DOI:

Jim, S. – Ambrose, S. H. – Evershed, R. P. 2004: Stable carbon izotopic evidence for differences in the dietary origin of bone cholesterol, collagen and apatite: implications for their use in palaeodietary reconstruction. Geochimica et Cosmochimica Acta 68, 61–72. DOI:

Jin, Y. – Yip, H. K. 2002: Supragingival calculus: formation and control. Critical Reviews in Oral Biology and Medicine 13, 426–441. DOI:

Kilian, M. R. – van der Plicht, J. – van Geel, B. – Goslar, T. 2002: Problematic 14C–AMS dates of pollen concentrates from Lake Gosciaz (Poland). Quaternary International 88, 21–26. DOI:

King, C. L. – Bentley, R. A. – Tayles, N. – Vidarsdóttir, U. S. – Nowell, G. – Macpherson, C. G. 2013: Moving peoples, changing diets: izotopic differences highlight migration and subsitence changes in the Upper Mun River Valley, Thailand. Journal of Archaeological Science 40, 1681–1688. DOI:

Kučera, J. – Maxeiner, S. – Mullerm, A. – Němec, M. – John, J. et al. 2022: A new AMS facility MILEA at the Nuclear Physics Institute in Řež, Czech Republic. Nuclear Instruments and Methods in Physics Research B 527, 29–33. DOI:

Kyselý, R. – Čuláková, K. – Pecinovská, M. – Široký, P. 2016: European Pond Turtles from Obříství (Bohemia, Czech Republic). International Journal of Osteoarchaeology 26, 732–739. DOI:

Libby, W. F. – Anderson, E. C. – Arnold, J. R. 1949: Age Determination by Radiocarbon Content: World–Wide Assay of Natural Radiocarbon. Science 109, 227–228. DOI:

Lieverse, A. R. 1999: Diet and the Aetiology of Dental Calculus. International Journal of Osteoarchaeology 9, 219–232. DOI:<219::AID-OA475>3.0.CO;2-V

Limburský, P. – Řídký, J. – Šumberová, R. – Končelová, M. 2018: Radiocarbon dating in action. In: J. Řídký – P. Květina – P. Limburský – M. Končelová – P. Burgert – R. Šumberová, Big men or chiefs? Rondel builders of Neolithic Europe. Oxford – Philadelphia: Oxbow Books, 103–135. DOI:

Mandel, I. D. 1990: Calculus formation and prevention: an overview. Compendium for Continuing Education in Dentistry, Supplemental 8, 235–241.

Marom, A. – McCullagh, J. S. – Higham, T. F. – Sinitsyn, A. A. – Hedges, R. E. 2012: Single amino acid radiocarbon dating of Upper Paleolithic modern humans. PNAS 109, 6878–6881. DOI:

McCullagh, J. S. O. – Marom, A. – Hedges, R. E. M. 2010: Radiocarbon dating of individual amino acids from archaeological bone collagen. Radiocarbon 52, 620–634. DOI:

Meadows, J. – Lübke, H. – Zagorska, I. – Berziņš, V. – Ceriņa, A. – Ozola, I. 2014: Potential Freshwater Reservoir Effects in a Neolithic Shell Midden at Riņņkalns, Latvia. Radiocarbon 56, 823–832. DOI:

Middleton, W. D. – Rovner, I. 1994: Extraction of opal phytoliths from herbivore dental calculus. Journal of Archaeological Science 21, 469–473. DOI:

Michalska Nawrocka, D. – Michcyńska, D. J. – Pazdur, A. – Czernik, J. 2007: Radiocarbon chronology of the ancient settlement in the Golan heights area, Israel. Radiocarbon 49, 625–637. DOI:

Mollenhauer, G. – Rethemeyer, J. 2009: Compound–specific radiocarbon analysis–analytical challenges and applications. In IOP Conference Series: Earth and Environmental Science 5, 12006. DOI:

Neulieb, T. – Levac, E. – Southon, J. – Lewis, M. – Pendea, I. F. – Chmura, G. L. 2013: Potential Pitfalls of Pollen Dating. Radiocarbon 55, 1142–1155. DOI:

Newnham, R. M. – Vandergoes, M. J. – Garnett, M. H. – Lowe, D. J. – Prior, C. – Almond, P. C. 2007: Test of AMS 14C dating of pollen concentrates using tephrochronology. Journal of Quaternary Science 22, 37–51. DOI:

Oinonen, M. – Haggren, G. – Kaskela, A. – Lavento, M. – Palonen, V. – Tikkanen, P. 2009: Radiocarbon Dating of Iron: A Northern Contribution. Radiocarbon 51, 873–881. DOI:

Olsen, J. – Heinemeier, J. – Bennike, P. – Krause, C. – Hornstrup, K. M., – Thrane, H. 2008: Characterisation and blind testing of radiocarbon dating of cremated bone. Journal of Archaeological Science 35, 791–800. DOI:

Olsen, J. – Heinemeier, J. – Hornstrup, K. M. – Bennike, P. – Thrane, H. 2013: ‘Old wood’ effect in radiocarbon dating of prehistoric cremated bones?. Journal of Archaeological Science 40, 30–34. DOI:

Olsen, J. – Heinemeier, J. – Lübke, H. – Lüth, F. – Terberger, T. 2010: Dietary habits and freshwater reservoir effects in bones from a Neolithic Northern German cemetery. Radiocarbon 52, 635–644. DOI:

Ozga, A. T. – Ottoni, C. 2023: Dental calculus as a proxy for animal microbiomes. Quaternary International 653/654, 47–52. DOI:

Pachnerová Brabcová, K. – Krofta T. – Valášek, V. – Suchý, V. – Kundrát, P. et al. 2022a: Radiocarbon dating charcoals from historical mortars from Týřov and Pyšolec castles. Radiation Protection Dosimetry 198, 681–686. DOI:

Pachnerová Brabcová, K. – Kundrát, P. – Petrová, M. – Krofta, T. – Suchý, V. et al. 2022b: Charcoals as indicators of historical mortar age of medieval Czech castle Pyšolec. Nuclear Instruments and Methods in Physics Research B 528, 8–14. DOI:

Pancost, R. D. – van Geel, B. – Baas, M. – Damsté, J. S. S. 2000: δ13C values and radiocarbon dates of microbial biomarkers as tracers for carbon recycling in peat deposits. Geology 28, 663–666. DOI:<0663:CVARDO>2.3.CO;2

Philippsen, B. 2013: The freshwater reservoir effect in radiocarbon dating. Heritage Science 1, 1–19. DOI:

Piotrowska, N. – Goslar, T. 2002: Preparation of bone samples in the Gliwice radiocarbon laboratory for AMS radiocarbon dating. Izotopes in Environmental and Health Studies 38, 267–275. DOI:

Piperno, D. R. – Stothert, K. E. 2003: Phytolith evidence for early Holocene Cucurbita domestication in southwest Ecuador. Science 299, 1054–1057. DOI:

Piperno, D. R. 2006: Phytoliths: a comprehensive guide for archaeologists and paleoecologists. Rowman: Altamira.

Piperno, D. R. 2016: Phytolith radiocarbon dating in archaeological and paleoecological research: a case study of phytoliths from modern Neotropical plants and a review of the previous dating evidence. Journal of Archaeological Science 68, 54–61. DOI:

Poulson, S. R. – Kuzminsky, S. C. – Scott, G. R. – Standen, V. G. – Arriaza, B. – Munoz, I. – Dorio, L. 2013: Paleodiet in northern Chile through the Holocene: extremly heavy δ15N values in dental calculus suggest a guano–derived signature?. Journal of Archaeological Science 40, 4579–4585. DOI:

Reimer, P. – Austin, W. – Bard, E. – Bayliss, A. – Blackwell, P. et al. 2020: The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon 62, 725–757. DOI:

Roffet–Salque, M. – Dunne, J. – Altoft, T. D. – Casanova, E. – Cramp, J. E. L. – Smyth, J. – Whelton, H. – Evershed, R. P. 2017: From the inside out: Upscaling organic residue analyses of archaeological ceramics. Journal of Archaeological Science: Reports 16, 627–640. DOI:

Rose, H. A. – Meadows, J. – Palstra, S. W. L. – Hamann, C. – Boudin, M. – Huels, M. 2019: Radiocarbon Dating Cremated Bone: A Case Study Comparing Laboratory Methods. Radiocarbon 61, 1581–1591. DOI:

Rutgers, L. V. – De Jong, A. F. M. – van der Borg, K. 2002: Radiocarbon dates from the Jewish catacombs of Rome. Radiocarbon 44, 541–547. DOI:

Řídký, J. – Květina, P. – Limburský, P. – Končelová, M. – Burgert, P. – Šumberová, R. 2018: Big men or chiefs? Rondel builders of Neolithic Europe. Oxford: Oxbow Books. DOI:

Santos, G. M. – Alexandre, A. – Southon, J. R. – Treseder, K. K. – Corbineau, R. – Reyerson, P. E. 2012: Possible source of ancient carbon in phytolith concentrates from harvested grasses. Biogeosciences 9, 1873–1884. DOI:

Santos, G. M. – Masion, A. – Alexandre, A. 2018: When the carbon being dated is not what you think it is: Insights from phytolith carbon research. Quaternary Science Reviews 197, 162–174. DOI:

Sarnthein, M. – Küssner, K. – Grootes, P. M. – Ausin, B. – Eglinton, T. et al. 2020: Plateaus and jumps in the atmospheric radiocarbon record–potential origin and value as global age markers for glacial-to-deglacial paleoceanography, a synthesis. Climate of the Past 16, 2547–2571. DOI:

Shiroukhov, R. 2019: AMS 14C Dating of the Cremated Human Bones and Funeral Fuel of the Western Balts. In Theory and in Practice. Archaeologia Lituana 20, 40–74. DOI:

Stafford Jr., T. W. – Hare, P. E. – Currie, L. A. – Jull, A. J. T. – Donahue, D. 1991: Acclerator radiocarbon dating at the molecular level. Journal of Archaeological Science 18, 35–72. DOI:

Stott, A. W. – Berstan, R. – Evershed, R. P. – Bronk Ramsey, C. – Hedges, R. E. – Humm, M. J. 2003: Direct dating of archaeological pottery by compound–specific 14C analysis of preserved lipids. Analytical Chemistry 75, 5037–5045. DOI:

Strömberg, C. A. – Dunn, R. E. – Crifò, C. – Harris, E. B. 2018: Phytoliths in paleoecology: analytical considerations, current use, and future directions. In: D. Croft – D. Su – S. Simpson (eds.), Methods in Paleoecology. Vertebrate Paleobiology and Paleoanthropology. Cham: Springer, 235–287. DOI:

Stuiver, M. – Polach, H. A. 1977: Reporting of 14C data. Radiocarbon 19, 355–363. DOI:

Světlík, I. – Dreslerová, D. – Limburský, P. – Tomášková, L. 2007: Radiouhlík v přírodě a jeho využití pro datovací účely. Archeologické rozhledy 59, 80–94.

Světlík, I. – Jull, A. J. T. – Molnár, M. – Povinec, P. P. – Kolář, T. – Demján, P. – Pachnerova Brabcova, K. – Brychova, V. – Dreslerová, D. – Rybníček, M. – Simek, P. 2019: The best possible time resolution: How precise could a Radiocarbon dating method be?. Radiocarbon 61, 1729–1740. DOI:

Tennant, R. K. – Jones, R. T. – Brock, F. – Cook, C. – Turney, C. S. M. – Love, J. – Lee, R. 2013: A new flow cytometry method enabling rapid purification of fossil pollen from terrestrial sediments for AMS radiocarbon dating. Journal of Quaternary Science 28, 229–236. DOI:

Thornton, M. D. – Moran, E. D. – Celoria, F. 1970: The composition of bog butter. Science and Archaeology 2/3, 20–25.

Tchapla, A. – Mejanelle, P. – Bleton, J. – Goursaud, S. 2004: Characterisation of embalming materials of a mummy of the Ptolemaic era. Comparison with balms from mummies of different areas. Journal of Separation Science 27, 217–234. DOI:

Tkáč, P. – Kolář, J. 2021: Towards New Demography Proxies and Regional Chronologies: Radiocarbon Dates from Archaeological Contexts Located in the Czech Republic Covering the Period Between 10,000 BC and AD 1250. Journal of Open Archaeology Data 9, 1–14. DOI:

Tripp, J. A. – McCullagh, J. S. O. – Hedges, R. E. M. 2006: Preparative separation of underivatized amino acids for compound–specific stable izotope analysis and radiocarbon dating of hydrolyzed bone collagen. Journal of Separation Science 29, 41–48. DOI:

Tunno, I. – Zimmerman, S. R. H. – Brown, T. A. – Hassel, C. A. 2021: An Improved Method for Extracting, Sorting, and AMS Dating of Pollen Concentrates From Lake Sediment. Frontiers in Ecology and Evolution 9, 1–16. DOI:

Urbanová, P. – Boaretto, E. – Artioli, G. 2020: The state–of–the–art of dating techniques applied to ancient mortars and binders: A review. Radiocarbon 62, 503–525. DOI:

van Klinken, G. J. – Bowles, A. D. – Hedges, R. E. M. 1994: Radiocarbon dating of peptides isolated from contaminated fossil bone collagen by collagenase digestion and reversed–phase chromatography. Geochimica et Cosmochimica Acta 58, 2543–2551. DOI:

Van Strydonck, M. 2016: Radiocarbon Dating of Cremated Bones: An Overview. In: G. Grupe – G. C. McGlynn (eds.), Isotopic Landscapes in Bioarchaeology, Berlin – Heidelberg: Springer, 69–89. DOI:

Vandergoes, M. J. – Prior, C. A. 2003: AMS Dating of Pollen Concentrates—A Methodological Study of Late Quaternary Sediments from South Westland, New Zealand. Radiocarbon 45, 479–491. DOI:

Velíšek, J. – Hajšlová, J. 2009: Chemie potravin I. 3. vyd. Tábor: OSSIS.

Vondrovský, V. – Demján, P. – Dreslerová, D. 2023: Arch14CZ – Czech Archaeological Radiocarbon Database. Dostupné z: [cit. 19-07-2023].

Wacker, L. – Christl, M. – Synal H. 2010: Bats: A new tool for AMS data reduction. Nuclear Instruments and Methods in Physics Research B 268, 976–979. DOI:

Warinner, C. – Hendy, J. – Speller, C. – Cappellini, E. – Fischer, R. et al. 2014a: Direct evidence of milk consumption from ancient human dental calculus. Scientific Reports 4, 1–6. DOI:

Warinner, Ch. – Rodrigues, J. F. M. – Vyas, R. – Trachsel, Ch. – Shved, N. – Grossmann, J. – Radini, A. – Hancock, Y. – Tito, R. Y. – Fiddyment, S. 2014b: Pathogens and host immunity in the ancient human oral cavity. Nature Genetic 46, 336–346. DOI:

Warinner, Ch. – Speller, C. – Collins, M. 2014c: A new era in palaeomicrobiology: prospects for ancient dental calculus as a long–term record of the human oral microbiome. Philosophical Transactions of the Royal Society B 370, 1–11. DOI:

Wesolowski, V. – de Souza, S. M. F. M. – Reinhard, K. J. – Ceccantini, G. 2010: Evaluating microfossil content of dental calculus from Brazilian sambaquis. Journal of Archaeological Science 37, 1326–1338. DOI:

Wolska, B. 2020: Applying isotope analyses of cremated human bones in archaeological research – a review. Analecta Archaeologica Ressoviensia 15, 7–16. DOI:

Wood, R. 2015: From revolution to convention: the past, present and future of radiocarbon dating. Journal of Archaeological Science 56, 61–72. DOI:

Yates A. B. – Smith, A. M. – Bertuch, F. 2015: Residue radiocarbon AMS dating review and preliminary sampling protocol suggestions. Journal of Archaeological Science 61, 223–234. DOI:

Yuan, S. – Wu, X. – Liu, K. – Guo, Z. – Cheng, X. – Pan, Y. – Wang, J. 2007: Removal of Contaminants from Oracle Bones During Sample Pretreatment. Radiocarbon 49, 211–216. DOI:

Zazzo, A. – Saliège, J. F. – Lebon, M. – Lepetz, S. – Moreau, C. – 2012: Radiocarbon Dating of Calcined Bones: Insights from Combustion Experiments Under Natural Conditions. Radiocarbon 54, 855–866. DOI:

Zazzo, A. – Saliège, J. F. – Person, A. – Boucher, H. 2009: Radiocarbon Dating of Calcined Bones: Where Does the Carbon Come from?. Radiocarbon 51, 601–611. DOI:

Zuo, X. – Lu, H. – Gu, Z. 2014: Distribution of soil phytolith–occluded carbon in the Chinese Loess Plateau and its implications for silica–carbon cycles. Plant and Soil 374, 223–232. DOI:

Zuo, X. – Lu, H. – Jiang, L. – Zhang, J. –Yang, X. – Huan, X. – Wu, N. 2017: Dating rice remains through phytolith carbon–14 study reveals domestication at the beginning of the Holocene. PNAS 114, 6486–6491. DOI:



How to Cite

Bíšková, J., Brychová, V., Demján, P., Dreslerová, D., Frank Danielisová, A., Hošková, K., John, D., Koštová, N., Limburský, P., Molnár, M., Moravcová, A., Pachnerová Brabcová, K., Petrová, M., Světlík, I., Šneberger, J., Tecl, J., & Valášek, V. (2023). Capabilities and limits of radiocarbon dating with a focus on untypical archaeological samples. Archeologické Rozhledy, 75(1), 40–67.



Topical Review

Most read articles by the same author(s)

1 2 > >>