Vol. 75 No. 1 (2023)
Topical Review

Capabilities and limits of radiocarbon dating with a focus on untypical archaeological samples

Jarmila Bíšková
Ústav jaderné fyziky AV ČR, Hlavní 130, 250 68 Husinec, CZ-260 68 Řež, Czech Republic; Ústav archeologie a muzeologie, Filozofická fakulta, Masarykova univerzita, Czech Republic
Veronika Brychová
Ústav jaderné fyziky AV ČR, Hlavní 130, 250 68 Husinec, CZ-260 68 Řež, Czech Republic
Peter Demján
Archeologický ústav AV ČR, Letenská 123/4, CZ-118 01 Praha, Czech Republic
Dagmar Dreslerová
Archeologický ústav AV ČR, Letenská 123/4, CZ-118 01 Praha, Czech Republic
Alžběta Frank Danielisová
Archeologický ústav AV ČR, Letenská 123/4, CZ-118 01 Praha, Czech Republic
Kristýna Hošková
Ústav jaderné fyziky AV ČR, Hlavní 130, 250 68 Husinec, CZ-260 68 Řež, Czech Republic; Přírodovědecká fakulta UK, Benátská 433/2, CZ-128 01 Praha, Czech Republic
David John
Ústav jaderné fyziky AV ČR, Hlavní 130, 250 68 Husinec, CZ-260 68 Řež, Czech Republic
Nikola Koštová
Archeologický ústav AV ČR, Letenská 123/4, CZ-118 01 Praha, Czech Republic
Petr Limburský
Archeologický ústav AV ČR, Letenská 123/4, CZ-118 01 Praha, Czech Republic
Mihály Molnár
Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research, Bem tér 18/C, Debrecen, H-4026, Hungary
Alice Moravcová
Archeologický ústav AV ČR, Letenská 123/4, CZ-118 01 Praha; Přírodovědecká fakulta UK, Benátská 433/2, CZ-128 01 Praha, Czech Republic
Kateřina Pachnerová Brabcová
Ústav jaderné fyziky AV ČR, Hlavní 130, 250 68 Husinec, CZ-260 68 Řež, Czech Republic
Markéta Petrová
Ústav jaderné fyziky AV ČR, Hlavní 130, 250 68 Husinec, CZ-260 68 Řež, Czech Republic
Ivo Světlík
Ústav jaderné fyziky AV ČR, Hlavní 130, 250 68 Husinec, CZ-260 68 Řež, Czech Republic
Jiří Šneberger
Ústav jaderné fyziky AV ČR, Hlavní 130, 250 68 Husinec, CZ-260 68 Řež; Archeologický ústav AV ČR, Letenská 123/4, CZ-118 01 Praha, Czech Republic; Katedra genetiky a mikrobiologie, Přírodovědecká fakulta, Karlova Univerzita, Viničná 5, Praha 2, CZ-12843, Czech Republic; Západočeské muzeum v Plzni, Kopeckého sady 2, 301 00 Plzeň, Czech Republic
Josef Tecl
Ústav jaderné fyziky AV ČR, Hlavní 130, 250 68 Husinec, CZ-260 68 Řež, Czech Republic
Vojtěch Valášek
Ústav jaderné fyziky AV ČR, Hlavní 130, 250 68 Husinec, CZ-260 68 Řež, Czech Republic; Přírodovědecká fakulta UK, Benátská 433/2, CZ-128 01 Praha, Czech Republic

Published 25-09-2023


  • radiocarbon dating,
  • lipids,
  • charred bones,
  • dental calculus,
  • iron,
  • mortar,
  • pollen and phytolith concentrates
  • ...More

How to Cite

Bíšková, J., Brychová, V., Demján, P., Dreslerová, D., Frank Danielisová, A., Hošková, K., John, D., Koštová, N., Limburský, P., Molnár, M., Moravcová, A., Pachnerová Brabcová, K., Petrová, M., Světlík, I., Šneberger, J., Tecl, J., & Valášek, V. (2023). Capabilities and limits of radiocarbon dating with a focus on untypical archaeological samples. Archeologické Rozhledy, 75(1), 40–67. https://doi.org/10.35686/AR.2023.4


Radiocarbon dating is an established method that helps to determine the absolute age of archaeological finds. This topical review presents the basic principles of the radiocarbon method, conventions for selecting samples from archaeological contexts, how to handle samples before sending them to the radiocarbon laboratory, laboratory methods for sample preparation, the AMS measurement procedure, and the calibration of results. Factors that limit the results of radiocarbon dating, particularly radiocarbon plateaux and the reservoir effect, are explained along with the ways how to recognise and eliminate their influence. The main aim of the paper is to critically evaluate the application of radiocarbon dating to less common archaeological samples (lipids preserved in the pores of pottery, charred bone, dental calculus, iron objects and iron slags, mortar, pollen and phytolith concentrates extracted from sediments or soils). Their dating opens new possibilities for the chronological determination of past natural and cultural processes or events.


Download data is not yet available.


  1. Addis A. – Secco M. – Marzaioli F. – Artioli G. – Chavarría Arnau A. – Passariello I. – Terrasi F. – Brogiolo G. P. 2019: Selecting the most reliable 14C dating material inside mortars: The origin of the Padua cathedral. Radiocarbon 61, 375–393. DOI: https://doi.org/10.1017/RDC.2018.147
  2. Adler, C. J. – Dobney, K. – Weyrich, L. S. – Kaidonis, J. – Walker A. W. – Haak, W. – Bradshaw, C. J. – Townsend, G. – Soltysiak, A. – Alt, K. W. 2013: Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nature Genetics 45, 450–457. DOI: https://doi.org/10.1038/ng.2536
  3. Asscher, Y. – Weiner, S. – Boaretto, E. 2017: A new method for extracting the insoluble occluded carbon in archaeological and modern phytoliths: Detection of 14C depleted carbon fraction and implications for radiocarbon dating. Journal of Archaeological Science 78, 57–65. DOI: https://doi.org/10.1016/j.jas.2016.11.005
  4. Bayliss, A. – van der Plicht, J. – Bronk Ramsey, Ch. – McCormac, G. – Healy, F. – Whittle, A. 2011: Towards generational time scales: the quantitative interpretation of archaeological chronologies. In: A. Whittle – F. Healy – A. Bayliss (eds.), Gathering time. Dating of Early Neolithic enclosures of southern Britain and Ireland, Oxford, Oakville: Oxbow, 17–59. DOI: https://doi.org/10.2307/j.ctvh1dwp2.13
  5. Beaumont, W. – Beverly, R. – Southon, J. – Taylor, R. E. 2010: Bone preparation at the KCCAMS laboratory. Nuclear Instruments and Methods in Physics Research Section B 268, 906–909. DOI: https://doi.org/10.1016/j.nimb.2009.10.061
  6. Bell, M. – P. J. Fowler, P. J. – Hillson, S. W. eds. 1996: The experimental earthwork project 1960–1992. (CBA Research report 100.) 1996. York: Council for British Archaeology.
  7. Bentley, R. A. 2012: Mobility and the diversity of early Neolithic lives: Izotopic evidence from skeletons. Journal of Anthropological Archaeology 32, 303–312. DOI: https://doi.org/10.1016/j.jaa.2012.01.009
  8. Berstan, R. – Stott, A. W. – Minnitt, S. – Ramsey, C. B. – Hedges, R. E. M. – Evershed, R. P. 2008: Direct dating of pottery from its organic residues: new precision using compound–specific carbon izotopes. Antiquity 82, 702–713. DOI: https://doi.org/10.1017/S0003598X00097325
  9. Brock, F. – Bronk Ramsey, C. – Higham, T. 2007. Quality assurance of ultrafiltered bone dating. Radiocarbon 49, 187–192. DOI: https://doi.org/10.1017/S0033822200042107
  10. Brock, F. – Dee, M. – Hughes, A. – Snoeck, C. – Staff, R. – Ramsey, C. B. 2018: Testing the effectiveness of protocols for removal of common conservation treatments for radiocarbon dating. Radiocarbon 60, 35–50. DOI: https://doi.org/10.1017/RDC.2017.68
  11. Bronk Ramsey, C. 1995: Radiocarbon calibration and analysis of stratigraphy: The OxCal program. Radiocarbon 37, 425–430. DOI: https://doi.org/10.1017/S0033822200030903
  12. Bronk Ramsey, C. 2009: Bayesian Analysis of Radiocarbon Dates. Radiocarbon 51, 337–360. DOI: https://doi.org/10.1017/S0033822200033865
  13. Bronk Ramsey, C. – Pettitt, P. – Hedges, R. – Hodgins, G. – Owen, D. C. 2000: Radiocarbon dates from the Oxford AMS system: Archaeometry datelist 30. Archaeometry 42, 459–479. DOI: https://doi.org/10.1111/j.1475-4754.2000.tb00893.x
  14. Brown, T. A. – Nelson, D. E. – Mathewes, R. W. – Vogel, J. S. – Southon, J. R. 1989: Radiocarbon Dating of Pollen by Accelerator Mass Spectrometry. Quaternary Research 32, 205–212. DOI: https://doi.org/10.1016/0033-5894(89)90076-8
  15. Bruhn, F. – Duhr, A. – Grootes, P. – Mintrop, A. – Nadeau, M. 2001: Chemical Removal of Conservation Substances by “Soxhlet”–Type Extraction. Radiocarbon 43, 229–237. DOI: https://doi.org/10.1017/S0033822200038054
  16. Brychova, V. – Roffet–Salque, M. – Pavlu, I. – Kyselka, J. – Kyjakova, P. – Filip, V. – Svetlik, I. – Evershed, R. P. 2021: Animal exploitation and pottery use during the early LBK phases of the Neolithic site of Bylany (Czech Republic) tracked through lipid residue analysis. Quaternary International 574, 91–101. DOI: https://doi.org/10.1016/j.quaint.2020.10.045
  17. Buck, C. E. – Juarez, M. 2017: Bayesian radiocarbon modelling for beginners (Version 1). arXiv.
  18. Bull, I. D. – Elhmmali, M. M. – Roberts, D. J. – Evershed, R. P. 2003: The application of steroidal biomarkers to track the abandonment of a Roman wastewater course at the Agora (Athens, Greece). Archaeometry 45, 149–161. DOI: https://doi.org/10.1111/1475-4754.00101
  19. Capuzzo, G. – Snoeck, C. – Boudin, M. – Dalle, S. – Annaert, R. et al. 2020: Cremation vs. Inhumation: modelling cultural changes in funerary practices from the mesolithic to the middle ages in Belgium using kernel density analysis on 14C data. Radiocarbon 62, 1809–1832. DOI: https://doi.org/10.1017/RDC.2020.88
  20. Cardon, D. 2007: Natural dyes: sources, tradition, technology and science. London: Archetype.
  21. Carter, V. A. – Bobek, P. – Moravcová, A. – Šolcová, A. – Chiverrell, R. C. et al. 2020: The role of climate–fuel feedbacks on Holocene biomass burning in upper–montane Carpathian forests. Global and Planetary Change 193, 103264. DOI: https://doi.org/10.1016/j.gloplacha.2020.103264
  22. Casanova, E. – Knowles, T. – Bayliss, A. – Dunne, J. – Barański, M. et al. 2020a: Accurate compound–specific 14C dating of archaeological pottery vessels. Nature 580, 506–510. DOI: https://doi.org/10.1038/s41586-020-2178-z
  23. Casanova, E. – Knowles, T. D. – Ford, C. – Cramp, L. J. – Sharples, N. – Evershed, R. P. 2020b: Compound–specific radiocarbon, stable carbon izotope and biomarker analysis of mixed marine/terrestrial lipids preserved in archaeological pottery vessels. Radiocarbon 62, 1679–1697. DOI: https://doi.org/10.1017/RDC.2020.11
  24. Casanova, E. – Knowles, T. – Williams, C. – Crump, M. – Evershed, R. 2017: Use of a 700 MHz NMR microcryoprobe for the identification and quantification of exogenous carbon in compounds purified by preparative capillary gas chromatography for radiocarbon determinations. Analytical Chemistry 89, 7090–7098. DOI: https://doi.org/10.1021/acs.analchem.7b00987
  25. Casanova, E. – Knowles, T. D. J. – Williams, C. – Crump, M. P. – Evershed, R. P. 2018: Practical considerations in high–precision compound–specific radiocarbon analyses: Eliminating the effects of solvent and sample cross–contamination on accuracy and precision. Analytical Chemistry 90, 11025–11032. DOI: https://doi.org/10.1021/acs.analchem.8b02713
  26. Cook, A. C. – Southon, J. R. – Wadsworth, J. 2003: Using radiocarbon dating to establish the age of iron–based artifacts. The Journal of The Minerals, Metals and Materials Society 55, 15–22. DOI: https://doi.org/10.1007/s11837-003-0239-z
  27. Corr, L. T. – Richards, M. P. – Jim, S. – Ambrose, S. H. – Mackie, A. – Beattie, O. – Evershed, R. P. 2008: Probing dietary change of the Kwädąy Dän Ts'ìnchį individual, an ancient glacier body from British Columbia: I. Complementary use od marine lipid biomarker and carbon izotope signatures as novel indicators of a marine diet. Journal of Archaeological Science 35, 2102–2110. DOI: https://doi.org/10.1016/j.jas.2008.01.018
  28. Craddock, P. T. – Wayman, M. L. – Jull, A. J. T. 2002: The Radiocarbon Dating and Authentication of Iron Artifacts. Radiocarbon 44, 717–732. DOI: https://doi.org/10.1017/S0033822200032173
  29. Cresswell, R. G. 1992: Radiocarbon dating of iron artifacts. Radiocarbon 34, 898–905. DOI: https://doi.org/10.1017/S0033822200064225
  30. Davis, J. T. – Sparks, D. 1971: Assimilation of 14CO2 by Catkins of Carya illinoensis and Apparent Translocation to the Pollen. American Journal of Botany 58, 932–938. DOI: https://doi.org/10.1002/j.1537-2197.1971.tb10048.x
  31. De La Fuente, C. – Flores, S. – Moraga, M. 2013: DNA from human ancient bacteria: a novel source of genetic evidence from archaeological dental calculus. Archaeometry 55, 767–778. DOI: https://doi.org/10.1111/j.1475-4754.2012.00707.x
  32. Devièse, T. – Comeskey, D. – McCullagh, J. – Bronk Ramsey, C. – Higham, T. 2018: New protocol for compound–specific radiocarbon analysis of archaeological bones. Rapid Communications in Mass Spectrometry 32, 373–379. DOI: https://doi.org/10.1002/rcm.8047
  33. Dobney, K. – Brothwell, D. 1987: A method for evaluating the amount of dental calculus on teeth from archaeological sites. Journal of Archaeological Science 14, 343–351. DOI: https://doi.org/10.1016/0305-4403(87)90024-0
  34. Eglinton, T. I. – Aluwihare, L. I. – Bauer, J. E. – Druffel, E. R. M. – McNichol, A. P. 1996: Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating. Analytical Chemistry 68, 904–912. DOI: https://doi.org/10.1021/ac9508513
  35. Eglinton, T. I. – Benitez–Nelson, B. C. – Pearson, A. – McNichol, A. P. – Bauer, J. E. – Druffel, E. R. 1997: Variability in radiocarbon ages of individual organic compounds from marine sediments. Science 277, 796–799. DOI: https://doi.org/10.1126/science.277.5327.796
  36. Evershed, R. P. 2008: Organic residue analysis in archaeology: The archaeological biomarker revolution. Archaeometry 50, 895–924. DOI: https://doi.org/10.1111/j.1475-4754.2008.00446.x
  37. Fernandes, R. – Bergemann, S. – Hartz, S. – Grootes, P. M. – Nadeau, M. – Melzner, F. – Rakowski, A. – Hüls, H. 2012: Mussels with Meat: Bivalve Tissue–Shell Radiocarbon Age Differences and Archaeological Implications. Radiocarbon 54, 953–965. DOI: https://doi.org/10.1017/S0033822200047597
  38. Fernandes, R. – Rinne, C. – Nadeau, M – Grootes, P. M. 2014: Towards the use of radiocarbon as a dietary proxy: Establishing a first wide-ranging radiocarbon reservoir effects baseline for Germany. Environmental Archaeology, 21, 285–294. DOI: https://doi.org/10.1179/1749631414Y.0000000034
  39. Fletcher, W. J. – Zielhofer, C. – Mischke, S. – Bryant, C. – Xu, X. – Fink, D. 2017: AMS radiocarbon dating of pollen concentrates in a karstic lake system. Quaternary Geochronology 39, 112–123. DOI: https://doi.org/10.1016/j.quageo.2017.02.006
  40. Folch, J. – Lees, M. – Sloane Stanley, G. H. 1957: A simple method for the isolation and purification of total lipids from animal tissues. Journal of biological Chemistry 226, 497–509. DOI: https://doi.org/10.1016/S0021-9258(18)64849-5
  41. Fülöp, R. H. – Heinze, S. – John, S. – Rethemeyer, J. 2013: Ultrafiltration of bone samples is neither the problem nor the solution. Radiocarbon 55, 491–500. DOI: https://doi.org/10.1017/S0033822200057623
  42. Gassmann, G. – Schäfer, A. 2018: Doubting radiocarbon dating from in–slag charcoal: five thousand years of iron production at Wetzlar–Dalheim?. Archeologické rozhledy 70, 309–327. DOI: https://doi.org/10.35686/AR.2018.14
  43. Gauthier, M. 2022: Using Radiocarbon Ages on Organics Affected by Freshwater – A Geologic and Archaeologic Update on the Freshwater Reservoir Ages and Freshwater Diet Effect in Manitoba, Canada. Radiocarbon 64, 253–264. DOI: https://doi.org/10.1017/RDC.2022.30
  44. Gupta, S. K. – Polach, H. A. 1985: Radiocarbon dating practises at ANU. Canberra: Australian National University.
  45. Haas, M. – Bliedtner, M. – Borodynkin, I. – Salazar, G. – Szidat, S. – Eglinton, T. I. – Zech, R. 2017: Radiocarbon dating of leaf waxes in the loess–paleosol sequence kurtak, central siberia. Radiocarbon 59, 165–176. DOI: https://doi.org/10.1017/RDC.2017.1
  46. Hajdas, I. – Michczynski, A. – Bonani, G. – Wacker, L. – Furrer, H. 2009: Dating bones near the limit of the radiocarbon dating method: study case mammoth from Niederweningen, Zh Switzerland. Radiocarbon 51, 675–680. DOI: https://doi.org/10.1017/S0033822200056010
  47. Hardy, K. – Blakeney, T. – Copeland, L. – Kirkham, J. – Wrangham, R. – Collins, M. 2009: Starch granules, dental calculus and new perspectives on ancient diet. Journal of Archaeological Science 36, 248–255. DOI: https://doi.org/10.1016/j.jas.2008.09.015
  48. Harkins K. M. – Stone A. C. 2015: Ancient pathogen genomics: insights into timing and adaptation. Journal of Human Evolution 79, 137–149. DOI: https://doi.org/10.1016/j.jhevol.2014.11.002
  49. Heaton, T. J. – Köhler, P. – Butzin, M. – Bard, E. – Reimer, R. W. et al. 2020: MARINE20 – the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820. DOI: https://doi.org/10.1017/RDC.2020.68
  50. Henry, A. G. – Brooks, A. S. – Piperno D. R. 2011: Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraque; Spy I and II, Belgium). PNAS 108, 486–491. DOI: https://doi.org/10.1073/pnas.1016868108
  51. Higham, T. – Ramsey, C. B. – Karavanic, I. – Smith, F. H. – Trinkaus, E. 2006: Revised direct radiocarbon dating of the Vindija G1 Upper Paleolithic Neandertals. PNAS 103, 553–557. DOI: https://doi.org/10.1073/pnas.0510005103
  52. Hillson, S. W. 1996: Dental Anthropology. Cambridge: Cambridge University Press. DOI: https://doi.org/10.1017/CBO9781139170697
  53. Hodson, M. J. 2018: Phytoliths in archaeology: chemical aspects. In: C. Smith (ed.), Encyclopedia of Global Archaeology. Cham: Springer. DOI: https://doi.org/10.1007/978-3-319-51726-1_3250-1
  54. Hodson, M. J. 2019: The relative importance of cell wall and lumen phytoliths in carbon sequestration in soil: a hypothesis. Frontiers in Earth Science 7, 167. DOI: https://doi.org/10.3389/feart.2019.00167
  55. Hofreiter, M. – Sneberger, J. – Pospisek, M. – Vanek, D. 2021: Progress in forensic bone DNA analysis: Lessons learned from ancient DNA. Forensic Science International: Genetics 54, 102538. DOI: https://doi.org/10.1016/j.fsigen.2021.102538
  56. Hopkins, R. J. A. – Hajdinjak, M. – Šefčáková, A. – Comeskey, D. – Devièse, T. – Higham, T. F. G. 2022: Single amino acid radiocarbon dating of two Neanderthals found at Šaľa (Slovakia). Radiocarbon 64, 87–100. DOI: https://doi.org/10.1017/RDC.2021.113
  57. Hua, Q. – Turnbull, J. C. – Santos, G. M. – Rakowski, A. Z. – Ancapichún, S. – De Pol-Holz, R. – Hammer, S. – Lehman, S. – Levin, I. – Biller, J. B. 2021: Atmospheric radiocarbon for the period 1950–2019. Radiocarbon 64, 723–745. DOI: https://doi.org/10.1017/RDC.2021.95
  58. Hüls, C. M. – Petri, I. – Föll, H. 2019: Absolute Dating of Early Iron Objects from the Ancient Orient: Radiocarbon Dating of Luristan Iron Mask Swords. Radiocarbon 61, 1229–1238. DOI: https://doi.org/10.1017/RDC.2019.13
  59. Hüls, C. M. – Erlenkeuser, H. – Nadeau, M. J. – Grootes, P. M. – Andersen, N. 2010: Experimental Study on the Origin of Cremated Bone Apatite Carbon. Radiocarbon 52, 587–599. DOI: https://doi.org/10.1017/S0033822200045628
  60. Hüls, C. M. – Grootes, P. M. – Nadeau, M.-J. – Bruhn, F. – Hasselberg, P. – Erlenkeuser, H. 2004: AMS radiocarbon dating of iron artefacts. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 223, 709–715. DOI: https://doi.org/10.1016/j.nimb.2004.04.132
  61. Ingalls, A. E. – Pearson, A. 2005: Compound–specific radiocarbon analysis. Oceanography 18, 19–31. DOI: https://doi.org/10.5670/oceanog.2005.22
  62. Jim, S. – Ambrose, S. H. – Evershed, R. P. 2004: Stable carbon izotopic evidence for differences in the dietary origin of bone cholesterol, collagen and apatite: implications for their use in palaeodietary reconstruction. Geochimica et Cosmochimica Acta 68, 61–72. DOI: https://doi.org/10.1016/S0016-7037(03)00216-3
  63. Jin, Y. – Yip, H. K. 2002: Supragingival calculus: formation and control. Critical Reviews in Oral Biology and Medicine 13, 426–441. DOI: https://doi.org/10.1177/154411130201300506
  64. Kilian, M. R. – van der Plicht, J. – van Geel, B. – Goslar, T. 2002: Problematic 14C–AMS dates of pollen concentrates from Lake Gosciaz (Poland). Quaternary International 88, 21–26. DOI: https://doi.org/10.1016/S1040-6182(01)00070-2
  65. King, C. L. – Bentley, R. A. – Tayles, N. – Vidarsdóttir, U. S. – Nowell, G. – Macpherson, C. G. 2013: Moving peoples, changing diets: izotopic differences highlight migration and subsitence changes in the Upper Mun River Valley, Thailand. Journal of Archaeological Science 40, 1681–1688. DOI: https://doi.org/10.1016/j.jas.2012.11.013
  66. Kučera, J. – Maxeiner, S. – Mullerm, A. – Němec, M. – John, J. et al. 2022: A new AMS facility MILEA at the Nuclear Physics Institute in Řež, Czech Republic. Nuclear Instruments and Methods in Physics Research B 527, 29–33. DOI: https://doi.org/10.1016/j.nimb.2022.07.012
  67. Kyselý, R. – Čuláková, K. – Pecinovská, M. – Široký, P. 2016: European Pond Turtles from Obříství (Bohemia, Czech Republic). International Journal of Osteoarchaeology 26, 732–739. DOI: https://doi.org/10.1002/oa.2466
  68. Libby, W. F. – Anderson, E. C. – Arnold, J. R. 1949: Age Determination by Radiocarbon Content: World–Wide Assay of Natural Radiocarbon. Science 109, 227–228. DOI: https://doi.org/10.1126/science.109.2827.227
  69. Lieverse, A. R. 1999: Diet and the Aetiology of Dental Calculus. International Journal of Osteoarchaeology 9, 219–232. DOI: https://doi.org/10.1002/(SICI)1099-1212(199907/08)9:4<219::AID-OA475>3.0.CO;2-V
  70. Limburský, P. – Řídký, J. – Šumberová, R. – Končelová, M. 2018: Radiocarbon dating in action. In: J. Řídký – P. Květina – P. Limburský – M. Končelová – P. Burgert – R. Šumberová, Big men or chiefs? Rondel builders of Neolithic Europe. Oxford – Philadelphia: Oxbow Books, 103–135. DOI: https://doi.org/10.2307/j.ctv13nb7k7.11
  71. Mandel, I. D. 1990: Calculus formation and prevention: an overview. Compendium for Continuing Education in Dentistry, Supplemental 8, 235–241.
  72. Marom, A. – McCullagh, J. S. – Higham, T. F. – Sinitsyn, A. A. – Hedges, R. E. 2012: Single amino acid radiocarbon dating of Upper Paleolithic modern humans. PNAS 109, 6878–6881. DOI: https://doi.org/10.1073/pnas.1116328109
  73. McCullagh, J. S. O. – Marom, A. – Hedges, R. E. M. 2010: Radiocarbon dating of individual amino acids from archaeological bone collagen. Radiocarbon 52, 620–634. DOI: https://doi.org/10.1017/S0033822200045653
  74. Meadows, J. – Lübke, H. – Zagorska, I. – Berziņš, V. – Ceriņa, A. – Ozola, I. 2014: Potential Freshwater Reservoir Effects in a Neolithic Shell Midden at Riņņkalns, Latvia. Radiocarbon 56, 823–832. DOI: https://doi.org/10.2458/56.16950
  75. Middleton, W. D. – Rovner, I. 1994: Extraction of opal phytoliths from herbivore dental calculus. Journal of Archaeological Science 21, 469–473. DOI: https://doi.org/10.1006/jasc.1994.1046
  76. Michalska Nawrocka, D. – Michcyńska, D. J. – Pazdur, A. – Czernik, J. 2007: Radiocarbon chronology of the ancient settlement in the Golan heights area, Israel. Radiocarbon 49, 625–637. DOI: https://doi.org/10.1017/S0033822200042521
  77. Mollenhauer, G. – Rethemeyer, J. 2009: Compound–specific radiocarbon analysis–analytical challenges and applications. In IOP Conference Series: Earth and Environmental Science 5, 12006. DOI: https://doi.org/10.1088/1755-1307/5/1/012006
  78. Neulieb, T. – Levac, E. – Southon, J. – Lewis, M. – Pendea, I. F. – Chmura, G. L. 2013: Potential Pitfalls of Pollen Dating. Radiocarbon 55, 1142–1155. DOI: https://doi.org/10.1017/S0033822200048050
  79. Newnham, R. M. – Vandergoes, M. J. – Garnett, M. H. – Lowe, D. J. – Prior, C. – Almond, P. C. 2007: Test of AMS 14C dating of pollen concentrates using tephrochronology. Journal of Quaternary Science 22, 37–51. DOI: https://doi.org/10.1002/jqs.1016
  80. Oinonen, M. – Haggren, G. – Kaskela, A. – Lavento, M. – Palonen, V. – Tikkanen, P. 2009: Radiocarbon Dating of Iron: A Northern Contribution. Radiocarbon 51, 873–881. DOI: https://doi.org/10.1017/S0033822200056186
  81. Olsen, J. – Heinemeier, J. – Bennike, P. – Krause, C. – Hornstrup, K. M., – Thrane, H. 2008: Characterisation and blind testing of radiocarbon dating of cremated bone. Journal of Archaeological Science 35, 791–800. DOI: https://doi.org/10.1016/j.jas.2007.06.011
  82. Olsen, J. – Heinemeier, J. – Hornstrup, K. M. – Bennike, P. – Thrane, H. 2013: ‘Old wood’ effect in radiocarbon dating of prehistoric cremated bones?. Journal of Archaeological Science 40, 30–34. DOI: https://doi.org/10.1016/j.jas.2012.05.034
  83. Olsen, J. – Heinemeier, J. – Lübke, H. – Lüth, F. – Terberger, T. 2010: Dietary habits and freshwater reservoir effects in bones from a Neolithic Northern German cemetery. Radiocarbon 52, 635–644. DOI: https://doi.org/10.1017/S0033822200045665
  84. Ozga, A. T. – Ottoni, C. 2023: Dental calculus as a proxy for animal microbiomes. Quaternary International 653/654, 47–52. DOI: https://doi.org/10.1016/j.quaint.2021.06.012
  85. Pachnerová Brabcová, K. – Krofta T. – Valášek, V. – Suchý, V. – Kundrát, P. et al. 2022a: Radiocarbon dating charcoals from historical mortars from Týřov and Pyšolec castles. Radiation Protection Dosimetry 198, 681–686. DOI: https://doi.org/10.1093/rpd/ncac119
  86. Pachnerová Brabcová, K. – Kundrát, P. – Petrová, M. – Krofta, T. – Suchý, V. et al. 2022b: Charcoals as indicators of historical mortar age of medieval Czech castle Pyšolec. Nuclear Instruments and Methods in Physics Research B 528, 8–14. DOI: https://doi.org/10.1016/j.nimb.2022.07.015
  87. Pancost, R. D. – van Geel, B. – Baas, M. – Damsté, J. S. S. 2000: δ13C values and radiocarbon dates of microbial biomarkers as tracers for carbon recycling in peat deposits. Geology 28, 663–666. DOI: https://doi.org/10.1130/0091-7613(2000)028<0663:CVARDO>2.3.CO;2
  88. Philippsen, B. 2013: The freshwater reservoir effect in radiocarbon dating. Heritage Science 1, 1–19. DOI: https://doi.org/10.1186/2050-7445-1-24
  89. Piotrowska, N. – Goslar, T. 2002: Preparation of bone samples in the Gliwice radiocarbon laboratory for AMS radiocarbon dating. Izotopes in Environmental and Health Studies 38, 267–275. DOI: https://doi.org/10.1080/10256010208033272
  90. Piperno, D. R. – Stothert, K. E. 2003: Phytolith evidence for early Holocene Cucurbita domestication in southwest Ecuador. Science 299, 1054–1057. DOI: https://doi.org/10.1126/science.1080365
  91. Piperno, D. R. 2006: Phytoliths: a comprehensive guide for archaeologists and paleoecologists. Rowman: Altamira.
  92. Piperno, D. R. 2016: Phytolith radiocarbon dating in archaeological and paleoecological research: a case study of phytoliths from modern Neotropical plants and a review of the previous dating evidence. Journal of Archaeological Science 68, 54–61. DOI: https://doi.org/10.1016/j.jas.2015.06.002
  93. Poulson, S. R. – Kuzminsky, S. C. – Scott, G. R. – Standen, V. G. – Arriaza, B. – Munoz, I. – Dorio, L. 2013: Paleodiet in northern Chile through the Holocene: extremly heavy δ15N values in dental calculus suggest a guano–derived signature?. Journal of Archaeological Science 40, 4579–4585. DOI: https://doi.org/10.1016/j.jas.2013.07.009
  94. Reimer, P. – Austin, W. – Bard, E. – Bayliss, A. – Blackwell, P. et al. 2020: The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon 62, 725–757. DOI: https://doi.org/10.1017/RDC.2020.41
  95. Roffet–Salque, M. – Dunne, J. – Altoft, T. D. – Casanova, E. – Cramp, J. E. L. – Smyth, J. – Whelton, H. – Evershed, R. P. 2017: From the inside out: Upscaling organic residue analyses of archaeological ceramics. Journal of Archaeological Science: Reports 16, 627–640. DOI: https://doi.org/10.1016/j.jasrep.2016.04.005
  96. Rose, H. A. – Meadows, J. – Palstra, S. W. L. – Hamann, C. – Boudin, M. – Huels, M. 2019: Radiocarbon Dating Cremated Bone: A Case Study Comparing Laboratory Methods. Radiocarbon 61, 1581–1591. DOI: https://doi.org/10.1017/RDC.2019.70
  97. Rutgers, L. V. – De Jong, A. F. M. – van der Borg, K. 2002: Radiocarbon dates from the Jewish catacombs of Rome. Radiocarbon 44, 541–547. DOI: https://doi.org/10.1017/S0033822200031891
  98. Řídký, J. – Květina, P. – Limburský, P. – Končelová, M. – Burgert, P. – Šumberová, R. 2018: Big men or chiefs? Rondel builders of Neolithic Europe. Oxford: Oxbow Books. DOI: https://doi.org/10.2307/j.ctv13nb7k7
  99. Santos, G. M. – Alexandre, A. – Southon, J. R. – Treseder, K. K. – Corbineau, R. – Reyerson, P. E. 2012: Possible source of ancient carbon in phytolith concentrates from harvested grasses. Biogeosciences 9, 1873–1884. DOI: https://doi.org/10.5194/bg-9-1873-2012
  100. Santos, G. M. – Masion, A. – Alexandre, A. 2018: When the carbon being dated is not what you think it is: Insights from phytolith carbon research. Quaternary Science Reviews 197, 162–174. DOI: https://doi.org/10.1016/j.quascirev.2018.08.007
  101. Sarnthein, M. – Küssner, K. – Grootes, P. M. – Ausin, B. – Eglinton, T. et al. 2020: Plateaus and jumps in the atmospheric radiocarbon record–potential origin and value as global age markers for glacial-to-deglacial paleoceanography, a synthesis. Climate of the Past 16, 2547–2571. DOI: https://doi.org/10.5194/cp-16-2547-2020
  102. Shiroukhov, R. 2019: AMS 14C Dating of the Cremated Human Bones and Funeral Fuel of the Western Balts. In Theory and in Practice. Archaeologia Lituana 20, 40–74. DOI: https://doi.org/10.15388/ArchLit.2019.20.3
  103. Stafford Jr., T. W. – Hare, P. E. – Currie, L. A. – Jull, A. J. T. – Donahue, D. 1991: Acclerator radiocarbon dating at the molecular level. Journal of Archaeological Science 18, 35–72. DOI: https://doi.org/10.1016/0305-4403(91)90078-4
  104. Stott, A. W. – Berstan, R. – Evershed, R. P. – Bronk Ramsey, C. – Hedges, R. E. – Humm, M. J. 2003: Direct dating of archaeological pottery by compound–specific 14C analysis of preserved lipids. Analytical Chemistry 75, 5037–5045. DOI: https://doi.org/10.1021/ac020743y
  105. Strömberg, C. A. – Dunn, R. E. – Crifò, C. – Harris, E. B. 2018: Phytoliths in paleoecology: analytical considerations, current use, and future directions. In: D. Croft – D. Su – S. Simpson (eds.), Methods in Paleoecology. Vertebrate Paleobiology and Paleoanthropology. Cham: Springer, 235–287. DOI: https://doi.org/10.1007/978-3-319-94265-0_12
  106. Stuiver, M. – Polach, H. A. 1977: Reporting of 14C data. Radiocarbon 19, 355–363. DOI: https://doi.org/10.1017/S0033822200003672
  107. Světlík, I. – Dreslerová, D. – Limburský, P. – Tomášková, L. 2007: Radiouhlík v přírodě a jeho využití pro datovací účely. Archeologické rozhledy 59, 80–94.
  108. Světlík, I. – Jull, A. J. T. – Molnár, M. – Povinec, P. P. – Kolář, T. – Demján, P. – Pachnerova Brabcova, K. – Brychova, V. – Dreslerová, D. – Rybníček, M. – Simek, P. 2019: The best possible time resolution: How precise could a Radiocarbon dating method be?. Radiocarbon 61, 1729–1740. DOI: https://doi.org/10.1017/RDC.2019.134
  109. Tennant, R. K. – Jones, R. T. – Brock, F. – Cook, C. – Turney, C. S. M. – Love, J. – Lee, R. 2013: A new flow cytometry method enabling rapid purification of fossil pollen from terrestrial sediments for AMS radiocarbon dating. Journal of Quaternary Science 28, 229–236. DOI: https://doi.org/10.1002/jqs.2606
  110. Thornton, M. D. – Moran, E. D. – Celoria, F. 1970: The composition of bog butter. Science and Archaeology 2/3, 20–25.
  111. Tchapla, A. – Mejanelle, P. – Bleton, J. – Goursaud, S. 2004: Characterisation of embalming materials of a mummy of the Ptolemaic era. Comparison with balms from mummies of different areas. Journal of Separation Science 27, 217–234. DOI: https://doi.org/10.1002/jssc.200301607
  112. Tkáč, P. – Kolář, J. 2021: Towards New Demography Proxies and Regional Chronologies: Radiocarbon Dates from Archaeological Contexts Located in the Czech Republic Covering the Period Between 10,000 BC and AD 1250. Journal of Open Archaeology Data 9, 1–14. DOI: https://doi.org/10.5334/joad.85
  113. Tripp, J. A. – McCullagh, J. S. O. – Hedges, R. E. M. 2006: Preparative separation of underivatized amino acids for compound–specific stable izotope analysis and radiocarbon dating of hydrolyzed bone collagen. Journal of Separation Science 29, 41–48. DOI: https://doi.org/10.1002/jssc.200500247
  114. Tunno, I. – Zimmerman, S. R. H. – Brown, T. A. – Hassel, C. A. 2021: An Improved Method for Extracting, Sorting, and AMS Dating of Pollen Concentrates From Lake Sediment. Frontiers in Ecology and Evolution 9, 1–16. DOI: https://doi.org/10.3389/fevo.2021.668676
  115. Urbanová, P. – Boaretto, E. – Artioli, G. 2020: The state–of–the–art of dating techniques applied to ancient mortars and binders: A review. Radiocarbon 62, 503–525. DOI: https://doi.org/10.1017/RDC.2020.43
  116. van Klinken, G. J. – Bowles, A. D. – Hedges, R. E. M. 1994: Radiocarbon dating of peptides isolated from contaminated fossil bone collagen by collagenase digestion and reversed–phase chromatography. Geochimica et Cosmochimica Acta 58, 2543–2551. DOI: https://doi.org/10.1016/0016-7037(94)90030-2
  117. Van Strydonck, M. 2016: Radiocarbon Dating of Cremated Bones: An Overview. In: G. Grupe – G. C. McGlynn (eds.), Isotopic Landscapes in Bioarchaeology, Berlin – Heidelberg: Springer, 69–89. DOI: https://doi.org/10.1007/978-3-662-48339-8_4
  118. Vandergoes, M. J. – Prior, C. A. 2003: AMS Dating of Pollen Concentrates—A Methodological Study of Late Quaternary Sediments from South Westland, New Zealand. Radiocarbon 45, 479–491. DOI: https://doi.org/10.1017/S0033822200032823
  119. Velíšek, J. – Hajšlová, J. 2009: Chemie potravin I. 3. vyd. Tábor: OSSIS.
  120. Vondrovský, V. – Demján, P. – Dreslerová, D. 2023: Arch14CZ – Czech Archaeological Radiocarbon Database. Dostupné z: http://arch14.aiscr.cz/ [cit. 19-07-2023].
  121. Wacker, L. – Christl, M. – Synal H. 2010: Bats: A new tool for AMS data reduction. Nuclear Instruments and Methods in Physics Research B 268, 976–979. DOI: https://doi.org/10.1016/j.nimb.2009.10.078
  122. Warinner, C. – Hendy, J. – Speller, C. – Cappellini, E. – Fischer, R. et al. 2014a: Direct evidence of milk consumption from ancient human dental calculus. Scientific Reports 4, 1–6. DOI: https://doi.org/10.1038/srep07104
  123. Warinner, Ch. – Rodrigues, J. F. M. – Vyas, R. – Trachsel, Ch. – Shved, N. – Grossmann, J. – Radini, A. – Hancock, Y. – Tito, R. Y. – Fiddyment, S. 2014b: Pathogens and host immunity in the ancient human oral cavity. Nature Genetic 46, 336–346. DOI: https://doi.org/10.1038/ng.2906
  124. Warinner, Ch. – Speller, C. – Collins, M. 2014c: A new era in palaeomicrobiology: prospects for ancient dental calculus as a long–term record of the human oral microbiome. Philosophical Transactions of the Royal Society B 370, 1–11. DOI: https://doi.org/10.1098/rstb.2013.0376
  125. Wesolowski, V. – de Souza, S. M. F. M. – Reinhard, K. J. – Ceccantini, G. 2010: Evaluating microfossil content of dental calculus from Brazilian sambaquis. Journal of Archaeological Science 37, 1326–1338. DOI: https://doi.org/10.1016/j.jas.2009.12.037
  126. Wolska, B. 2020: Applying isotope analyses of cremated human bones in archaeological research – a review. Analecta Archaeologica Ressoviensia 15, 7–16. DOI: https://doi.org/10.15584/anarres.2020.15.1
  127. Wood, R. 2015: From revolution to convention: the past, present and future of radiocarbon dating. Journal of Archaeological Science 56, 61–72. DOI: https://doi.org/10.1016/j.jas.2015.02.019
  128. Yates A. B. – Smith, A. M. – Bertuch, F. 2015: Residue radiocarbon AMS dating review and preliminary sampling protocol suggestions. Journal of Archaeological Science 61, 223–234. DOI: https://doi.org/10.1016/j.jas.2015.06.011
  129. Yuan, S. – Wu, X. – Liu, K. – Guo, Z. – Cheng, X. – Pan, Y. – Wang, J. 2007: Removal of Contaminants from Oracle Bones During Sample Pretreatment. Radiocarbon 49, 211–216. DOI: https://doi.org/10.1017/S0033822200042132
  130. Zazzo, A. – Saliège, J. F. – Lebon, M. – Lepetz, S. – Moreau, C. – 2012: Radiocarbon Dating of Calcined Bones: Insights from Combustion Experiments Under Natural Conditions. Radiocarbon 54, 855–866. DOI: https://doi.org/10.1017/S0033822200047500
  131. Zazzo, A. – Saliège, J. F. – Person, A. – Boucher, H. 2009: Radiocarbon Dating of Calcined Bones: Where Does the Carbon Come from?. Radiocarbon 51, 601–611. DOI: https://doi.org/10.1017/S0033822200055958
  132. Zuo, X. – Lu, H. – Gu, Z. 2014: Distribution of soil phytolith–occluded carbon in the Chinese Loess Plateau and its implications for silica–carbon cycles. Plant and Soil 374, 223–232. DOI: https://doi.org/10.1007/s11104-013-1850-6
  133. Zuo, X. – Lu, H. – Jiang, L. – Zhang, J. –Yang, X. – Huan, X. – Wu, N. 2017: Dating rice remains through phytolith carbon–14 study reveals domestication at the beginning of the Holocene. PNAS 114, 6486–6491. DOI: https://doi.org/10.1073/pnas.1704304114