Capabilities and limits of radiocarbon dating with a focus on untypical archaeological samples
DOI:
https://doi.org/10.35686/AR.2023.4Keywords:
radiocarbon dating, lipids, charred bones, dental calculus, iron, mortar, pollen and phytolith concentratesAbstract
Radiocarbon dating is an established method that helps to determine the absolute age of archaeological finds. This topical review presents the basic principles of the radiocarbon method, conventions for selecting samples from archaeological contexts, how to handle samples before sending them to the radiocarbon laboratory, laboratory methods for sample preparation, the AMS measurement procedure, and the calibration of results. Factors that limit the results of radiocarbon dating, particularly radiocarbon plateaux and the reservoir effect, are explained along with the ways how to recognise and eliminate their influence. The main aim of the paper is to critically evaluate the application of radiocarbon dating to less common archaeological samples (lipids preserved in the pores of pottery, charred bone, dental calculus, iron objects and iron slags, mortar, pollen and phytolith concentrates extracted from sediments or soils). Their dating opens new possibilities for the chronological determination of past natural and cultural processes or events.
Downloads
References
Addis A. – Secco M. – Marzaioli F. – Artioli G. – Chavarría Arnau A. – Passariello I. – Terrasi F. – Brogiolo G. P. 2019: Selecting the most reliable 14C dating material inside mortars: The origin of the Padua cathedral. Radiocarbon 61, 375–393. DOI: https://doi.org/10.1017/RDC.2018.147
Adler, C. J. – Dobney, K. – Weyrich, L. S. – Kaidonis, J. – Walker A. W. – Haak, W. – Bradshaw, C. J. – Townsend, G. – Soltysiak, A. – Alt, K. W. 2013: Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nature Genetics 45, 450–457. DOI: https://doi.org/10.1038/ng.2536
Asscher, Y. – Weiner, S. – Boaretto, E. 2017: A new method for extracting the insoluble occluded carbon in archaeological and modern phytoliths: Detection of 14C depleted carbon fraction and implications for radiocarbon dating. Journal of Archaeological Science 78, 57–65. DOI: https://doi.org/10.1016/j.jas.2016.11.005
Bayliss, A. – van der Plicht, J. – Bronk Ramsey, Ch. – McCormac, G. – Healy, F. – Whittle, A. 2011: Towards generational time scales: the quantitative interpretation of archaeological chronologies. In: A. Whittle – F. Healy – A. Bayliss (eds.), Gathering time. Dating of Early Neolithic enclosures of southern Britain and Ireland, Oxford, Oakville: Oxbow, 17–59. DOI: https://doi.org/10.2307/j.ctvh1dwp2.13
Beaumont, W. – Beverly, R. – Southon, J. – Taylor, R. E. 2010: Bone preparation at the KCCAMS laboratory. Nuclear Instruments and Methods in Physics Research Section B 268, 906–909. DOI: https://doi.org/10.1016/j.nimb.2009.10.061
Bell, M. – P. J. Fowler, P. J. – Hillson, S. W. eds. 1996: The experimental earthwork project 1960–1992. (CBA Research report 100.) 1996. York: Council for British Archaeology.
Bentley, R. A. 2012: Mobility and the diversity of early Neolithic lives: Izotopic evidence from skeletons. Journal of Anthropological Archaeology 32, 303–312. DOI: https://doi.org/10.1016/j.jaa.2012.01.009
Berstan, R. – Stott, A. W. – Minnitt, S. – Ramsey, C. B. – Hedges, R. E. M. – Evershed, R. P. 2008: Direct dating of pottery from its organic residues: new precision using compound–specific carbon izotopes. Antiquity 82, 702–713. DOI: https://doi.org/10.1017/S0003598X00097325
Brock, F. – Bronk Ramsey, C. – Higham, T. 2007. Quality assurance of ultrafiltered bone dating. Radiocarbon 49, 187–192. DOI: https://doi.org/10.1017/S0033822200042107
Brock, F. – Dee, M. – Hughes, A. – Snoeck, C. – Staff, R. – Ramsey, C. B. 2018: Testing the effectiveness of protocols for removal of common conservation treatments for radiocarbon dating. Radiocarbon 60, 35–50. DOI: https://doi.org/10.1017/RDC.2017.68
Bronk Ramsey, C. 1995: Radiocarbon calibration and analysis of stratigraphy: The OxCal program. Radiocarbon 37, 425–430. DOI: https://doi.org/10.1017/S0033822200030903
Bronk Ramsey, C. 2009: Bayesian Analysis of Radiocarbon Dates. Radiocarbon 51, 337–360. DOI: https://doi.org/10.1017/S0033822200033865
Bronk Ramsey, C. – Pettitt, P. – Hedges, R. – Hodgins, G. – Owen, D. C. 2000: Radiocarbon dates from the Oxford AMS system: Archaeometry datelist 30. Archaeometry 42, 459–479. DOI: https://doi.org/10.1111/j.1475-4754.2000.tb00893.x
Brown, T. A. – Nelson, D. E. – Mathewes, R. W. – Vogel, J. S. – Southon, J. R. 1989: Radiocarbon Dating of Pollen by Accelerator Mass Spectrometry. Quaternary Research 32, 205–212. DOI: https://doi.org/10.1016/0033-5894(89)90076-8
Bruhn, F. – Duhr, A. – Grootes, P. – Mintrop, A. – Nadeau, M. 2001: Chemical Removal of Conservation Substances by “Soxhlet”–Type Extraction. Radiocarbon 43, 229–237. DOI: https://doi.org/10.1017/S0033822200038054
Brychova, V. – Roffet–Salque, M. – Pavlu, I. – Kyselka, J. – Kyjakova, P. – Filip, V. – Svetlik, I. – Evershed, R. P. 2021: Animal exploitation and pottery use during the early LBK phases of the Neolithic site of Bylany (Czech Republic) tracked through lipid residue analysis. Quaternary International 574, 91–101. DOI: https://doi.org/10.1016/j.quaint.2020.10.045
Buck, C. E. – Juarez, M. 2017: Bayesian radiocarbon modelling for beginners (Version 1). arXiv.
Bull, I. D. – Elhmmali, M. M. – Roberts, D. J. – Evershed, R. P. 2003: The application of steroidal biomarkers to track the abandonment of a Roman wastewater course at the Agora (Athens, Greece). Archaeometry 45, 149–161. DOI: https://doi.org/10.1111/1475-4754.00101
Capuzzo, G. – Snoeck, C. – Boudin, M. – Dalle, S. – Annaert, R. et al. 2020: Cremation vs. Inhumation: modelling cultural changes in funerary practices from the mesolithic to the middle ages in Belgium using kernel density analysis on 14C data. Radiocarbon 62, 1809–1832. DOI: https://doi.org/10.1017/RDC.2020.88
Cardon, D. 2007: Natural dyes: sources, tradition, technology and science. London: Archetype.
Carter, V. A. – Bobek, P. – Moravcová, A. – Šolcová, A. – Chiverrell, R. C. et al. 2020: The role of climate–fuel feedbacks on Holocene biomass burning in upper–montane Carpathian forests. Global and Planetary Change 193, 103264. DOI: https://doi.org/10.1016/j.gloplacha.2020.103264
Casanova, E. – Knowles, T. – Bayliss, A. – Dunne, J. – Barański, M. et al. 2020a: Accurate compound–specific 14C dating of archaeological pottery vessels. Nature 580, 506–510. DOI: https://doi.org/10.1038/s41586-020-2178-z
Casanova, E. – Knowles, T. D. – Ford, C. – Cramp, L. J. – Sharples, N. – Evershed, R. P. 2020b: Compound–specific radiocarbon, stable carbon izotope and biomarker analysis of mixed marine/terrestrial lipids preserved in archaeological pottery vessels. Radiocarbon 62, 1679–1697. DOI: https://doi.org/10.1017/RDC.2020.11
Casanova, E. – Knowles, T. – Williams, C. – Crump, M. – Evershed, R. 2017: Use of a 700 MHz NMR microcryoprobe for the identification and quantification of exogenous carbon in compounds purified by preparative capillary gas chromatography for radiocarbon determinations. Analytical Chemistry 89, 7090–7098. DOI: https://doi.org/10.1021/acs.analchem.7b00987
Casanova, E. – Knowles, T. D. J. – Williams, C. – Crump, M. P. – Evershed, R. P. 2018: Practical considerations in high–precision compound–specific radiocarbon analyses: Eliminating the effects of solvent and sample cross–contamination on accuracy and precision. Analytical Chemistry 90, 11025–11032. DOI: https://doi.org/10.1021/acs.analchem.8b02713
Cook, A. C. – Southon, J. R. – Wadsworth, J. 2003: Using radiocarbon dating to establish the age of iron–based artifacts. The Journal of The Minerals, Metals and Materials Society 55, 15–22. DOI: https://doi.org/10.1007/s11837-003-0239-z
Corr, L. T. – Richards, M. P. – Jim, S. – Ambrose, S. H. – Mackie, A. – Beattie, O. – Evershed, R. P. 2008: Probing dietary change of the Kwädąy Dän Ts'ìnchį individual, an ancient glacier body from British Columbia: I. Complementary use od marine lipid biomarker and carbon izotope signatures as novel indicators of a marine diet. Journal of Archaeological Science 35, 2102–2110. DOI: https://doi.org/10.1016/j.jas.2008.01.018
Craddock, P. T. – Wayman, M. L. – Jull, A. J. T. 2002: The Radiocarbon Dating and Authentication of Iron Artifacts. Radiocarbon 44, 717–732. DOI: https://doi.org/10.1017/S0033822200032173
Cresswell, R. G. 1992: Radiocarbon dating of iron artifacts. Radiocarbon 34, 898–905. DOI: https://doi.org/10.1017/S0033822200064225
Davis, J. T. – Sparks, D. 1971: Assimilation of 14CO2 by Catkins of Carya illinoensis and Apparent Translocation to the Pollen. American Journal of Botany 58, 932–938. DOI: https://doi.org/10.1002/j.1537-2197.1971.tb10048.x
De La Fuente, C. – Flores, S. – Moraga, M. 2013: DNA from human ancient bacteria: a novel source of genetic evidence from archaeological dental calculus. Archaeometry 55, 767–778. DOI: https://doi.org/10.1111/j.1475-4754.2012.00707.x
Devièse, T. – Comeskey, D. – McCullagh, J. – Bronk Ramsey, C. – Higham, T. 2018: New protocol for compound–specific radiocarbon analysis of archaeological bones. Rapid Communications in Mass Spectrometry 32, 373–379. DOI: https://doi.org/10.1002/rcm.8047
Dobney, K. – Brothwell, D. 1987: A method for evaluating the amount of dental calculus on teeth from archaeological sites. Journal of Archaeological Science 14, 343–351. DOI: https://doi.org/10.1016/0305-4403(87)90024-0
Eglinton, T. I. – Aluwihare, L. I. – Bauer, J. E. – Druffel, E. R. M. – McNichol, A. P. 1996: Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating. Analytical Chemistry 68, 904–912. DOI: https://doi.org/10.1021/ac9508513
Eglinton, T. I. – Benitez–Nelson, B. C. – Pearson, A. – McNichol, A. P. – Bauer, J. E. – Druffel, E. R. 1997: Variability in radiocarbon ages of individual organic compounds from marine sediments. Science 277, 796–799. DOI: https://doi.org/10.1126/science.277.5327.796
Evershed, R. P. 2008: Organic residue analysis in archaeology: The archaeological biomarker revolution. Archaeometry 50, 895–924. DOI: https://doi.org/10.1111/j.1475-4754.2008.00446.x
Fernandes, R. – Bergemann, S. – Hartz, S. – Grootes, P. M. – Nadeau, M. – Melzner, F. – Rakowski, A. – Hüls, H. 2012: Mussels with Meat: Bivalve Tissue–Shell Radiocarbon Age Differences and Archaeological Implications. Radiocarbon 54, 953–965. DOI: https://doi.org/10.1017/S0033822200047597
Fernandes, R. – Rinne, C. – Nadeau, M – Grootes, P. M. 2014: Towards the use of radiocarbon as a dietary proxy: Establishing a first wide-ranging radiocarbon reservoir effects baseline for Germany. Environmental Archaeology, 21, 285–294. DOI: https://doi.org/10.1179/1749631414Y.0000000034
Fletcher, W. J. – Zielhofer, C. – Mischke, S. – Bryant, C. – Xu, X. – Fink, D. 2017: AMS radiocarbon dating of pollen concentrates in a karstic lake system. Quaternary Geochronology 39, 112–123. DOI: https://doi.org/10.1016/j.quageo.2017.02.006
Folch, J. – Lees, M. – Sloane Stanley, G. H. 1957: A simple method for the isolation and purification of total lipids from animal tissues. Journal of biological Chemistry 226, 497–509. DOI: https://doi.org/10.1016/S0021-9258(18)64849-5
Fülöp, R. H. – Heinze, S. – John, S. – Rethemeyer, J. 2013: Ultrafiltration of bone samples is neither the problem nor the solution. Radiocarbon 55, 491–500. DOI: https://doi.org/10.1017/S0033822200057623
Gassmann, G. – Schäfer, A. 2018: Doubting radiocarbon dating from in–slag charcoal: five thousand years of iron production at Wetzlar–Dalheim?. Archeologické rozhledy 70, 309–327. DOI: https://doi.org/10.35686/AR.2018.14
Gauthier, M. 2022: Using Radiocarbon Ages on Organics Affected by Freshwater – A Geologic and Archaeologic Update on the Freshwater Reservoir Ages and Freshwater Diet Effect in Manitoba, Canada. Radiocarbon 64, 253–264. DOI: https://doi.org/10.1017/RDC.2022.30
Gupta, S. K. – Polach, H. A. 1985: Radiocarbon dating practises at ANU. Canberra: Australian National University.
Haas, M. – Bliedtner, M. – Borodynkin, I. – Salazar, G. – Szidat, S. – Eglinton, T. I. – Zech, R. 2017: Radiocarbon dating of leaf waxes in the loess–paleosol sequence kurtak, central siberia. Radiocarbon 59, 165–176. DOI: https://doi.org/10.1017/RDC.2017.1
Hajdas, I. – Michczynski, A. – Bonani, G. – Wacker, L. – Furrer, H. 2009: Dating bones near the limit of the radiocarbon dating method: study case mammoth from Niederweningen, Zh Switzerland. Radiocarbon 51, 675–680. DOI: https://doi.org/10.1017/S0033822200056010
Hardy, K. – Blakeney, T. – Copeland, L. – Kirkham, J. – Wrangham, R. – Collins, M. 2009: Starch granules, dental calculus and new perspectives on ancient diet. Journal of Archaeological Science 36, 248–255. DOI: https://doi.org/10.1016/j.jas.2008.09.015
Harkins K. M. – Stone A. C. 2015: Ancient pathogen genomics: insights into timing and adaptation. Journal of Human Evolution 79, 137–149. DOI: https://doi.org/10.1016/j.jhevol.2014.11.002
Heaton, T. J. – Köhler, P. – Butzin, M. – Bard, E. – Reimer, R. W. et al. 2020: MARINE20 – the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820. DOI: https://doi.org/10.1017/RDC.2020.68
Henry, A. G. – Brooks, A. S. – Piperno D. R. 2011: Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraque; Spy I and II, Belgium). PNAS 108, 486–491. DOI: https://doi.org/10.1073/pnas.1016868108
Higham, T. – Ramsey, C. B. – Karavanic, I. – Smith, F. H. – Trinkaus, E. 2006: Revised direct radiocarbon dating of the Vindija G1 Upper Paleolithic Neandertals. PNAS 103, 553–557. DOI: https://doi.org/10.1073/pnas.0510005103
Hillson, S. W. 1996: Dental Anthropology. Cambridge: Cambridge University Press. DOI: https://doi.org/10.1017/CBO9781139170697
Hodson, M. J. 2018: Phytoliths in archaeology: chemical aspects. In: C. Smith (ed.), Encyclopedia of Global Archaeology. Cham: Springer. DOI: https://doi.org/10.1007/978-3-319-51726-1_3250-1
Hodson, M. J. 2019: The relative importance of cell wall and lumen phytoliths in carbon sequestration in soil: a hypothesis. Frontiers in Earth Science 7, 167. DOI: https://doi.org/10.3389/feart.2019.00167
Hofreiter, M. – Sneberger, J. – Pospisek, M. – Vanek, D. 2021: Progress in forensic bone DNA analysis: Lessons learned from ancient DNA. Forensic Science International: Genetics 54, 102538. DOI: https://doi.org/10.1016/j.fsigen.2021.102538
Hopkins, R. J. A. – Hajdinjak, M. – Šefčáková, A. – Comeskey, D. – Devièse, T. – Higham, T. F. G. 2022: Single amino acid radiocarbon dating of two Neanderthals found at Šaľa (Slovakia). Radiocarbon 64, 87–100. DOI: https://doi.org/10.1017/RDC.2021.113
Hua, Q. – Turnbull, J. C. – Santos, G. M. – Rakowski, A. Z. – Ancapichún, S. – De Pol-Holz, R. – Hammer, S. – Lehman, S. – Levin, I. – Biller, J. B. 2021: Atmospheric radiocarbon for the period 1950–2019. Radiocarbon 64, 723–745. DOI: https://doi.org/10.1017/RDC.2021.95
Hüls, C. M. – Petri, I. – Föll, H. 2019: Absolute Dating of Early Iron Objects from the Ancient Orient: Radiocarbon Dating of Luristan Iron Mask Swords. Radiocarbon 61, 1229–1238. DOI: https://doi.org/10.1017/RDC.2019.13
Hüls, C. M. – Erlenkeuser, H. – Nadeau, M. J. – Grootes, P. M. – Andersen, N. 2010: Experimental Study on the Origin of Cremated Bone Apatite Carbon. Radiocarbon 52, 587–599. DOI: https://doi.org/10.1017/S0033822200045628
Hüls, C. M. – Grootes, P. M. – Nadeau, M.-J. – Bruhn, F. – Hasselberg, P. – Erlenkeuser, H. 2004: AMS radiocarbon dating of iron artefacts. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 223, 709–715. DOI: https://doi.org/10.1016/j.nimb.2004.04.132
Ingalls, A. E. – Pearson, A. 2005: Compound–specific radiocarbon analysis. Oceanography 18, 19–31. DOI: https://doi.org/10.5670/oceanog.2005.22
Jim, S. – Ambrose, S. H. – Evershed, R. P. 2004: Stable carbon izotopic evidence for differences in the dietary origin of bone cholesterol, collagen and apatite: implications for their use in palaeodietary reconstruction. Geochimica et Cosmochimica Acta 68, 61–72. DOI: https://doi.org/10.1016/S0016-7037(03)00216-3
Jin, Y. – Yip, H. K. 2002: Supragingival calculus: formation and control. Critical Reviews in Oral Biology and Medicine 13, 426–441. DOI: https://doi.org/10.1177/154411130201300506
Kilian, M. R. – van der Plicht, J. – van Geel, B. – Goslar, T. 2002: Problematic 14C–AMS dates of pollen concentrates from Lake Gosciaz (Poland). Quaternary International 88, 21–26. DOI: https://doi.org/10.1016/S1040-6182(01)00070-2
King, C. L. – Bentley, R. A. – Tayles, N. – Vidarsdóttir, U. S. – Nowell, G. – Macpherson, C. G. 2013: Moving peoples, changing diets: izotopic differences highlight migration and subsitence changes in the Upper Mun River Valley, Thailand. Journal of Archaeological Science 40, 1681–1688. DOI: https://doi.org/10.1016/j.jas.2012.11.013
Kučera, J. – Maxeiner, S. – Mullerm, A. – Němec, M. – John, J. et al. 2022: A new AMS facility MILEA at the Nuclear Physics Institute in Řež, Czech Republic. Nuclear Instruments and Methods in Physics Research B 527, 29–33. DOI: https://doi.org/10.1016/j.nimb.2022.07.012
Kyselý, R. – Čuláková, K. – Pecinovská, M. – Široký, P. 2016: European Pond Turtles from Obříství (Bohemia, Czech Republic). International Journal of Osteoarchaeology 26, 732–739. DOI: https://doi.org/10.1002/oa.2466
Libby, W. F. – Anderson, E. C. – Arnold, J. R. 1949: Age Determination by Radiocarbon Content: World–Wide Assay of Natural Radiocarbon. Science 109, 227–228. DOI: https://doi.org/10.1126/science.109.2827.227
Lieverse, A. R. 1999: Diet and the Aetiology of Dental Calculus. International Journal of Osteoarchaeology 9, 219–232. DOI: https://doi.org/10.1002/(SICI)1099-1212(199907/08)9:4<219::AID-OA475>3.0.CO;2-V
Limburský, P. – Řídký, J. – Šumberová, R. – Končelová, M. 2018: Radiocarbon dating in action. In: J. Řídký – P. Květina – P. Limburský – M. Končelová – P. Burgert – R. Šumberová, Big men or chiefs? Rondel builders of Neolithic Europe. Oxford – Philadelphia: Oxbow Books, 103–135. DOI: https://doi.org/10.2307/j.ctv13nb7k7.11
Mandel, I. D. 1990: Calculus formation and prevention: an overview. Compendium for Continuing Education in Dentistry, Supplemental 8, 235–241.
Marom, A. – McCullagh, J. S. – Higham, T. F. – Sinitsyn, A. A. – Hedges, R. E. 2012: Single amino acid radiocarbon dating of Upper Paleolithic modern humans. PNAS 109, 6878–6881. DOI: https://doi.org/10.1073/pnas.1116328109
McCullagh, J. S. O. – Marom, A. – Hedges, R. E. M. 2010: Radiocarbon dating of individual amino acids from archaeological bone collagen. Radiocarbon 52, 620–634. DOI: https://doi.org/10.1017/S0033822200045653
Meadows, J. – Lübke, H. – Zagorska, I. – Berziņš, V. – Ceriņa, A. – Ozola, I. 2014: Potential Freshwater Reservoir Effects in a Neolithic Shell Midden at Riņņkalns, Latvia. Radiocarbon 56, 823–832. DOI: https://doi.org/10.2458/56.16950
Middleton, W. D. – Rovner, I. 1994: Extraction of opal phytoliths from herbivore dental calculus. Journal of Archaeological Science 21, 469–473. DOI: https://doi.org/10.1006/jasc.1994.1046
Michalska Nawrocka, D. – Michcyńska, D. J. – Pazdur, A. – Czernik, J. 2007: Radiocarbon chronology of the ancient settlement in the Golan heights area, Israel. Radiocarbon 49, 625–637. DOI: https://doi.org/10.1017/S0033822200042521
Mollenhauer, G. – Rethemeyer, J. 2009: Compound–specific radiocarbon analysis–analytical challenges and applications. In IOP Conference Series: Earth and Environmental Science 5, 12006. DOI: https://doi.org/10.1088/1755-1307/5/1/012006
Neulieb, T. – Levac, E. – Southon, J. – Lewis, M. – Pendea, I. F. – Chmura, G. L. 2013: Potential Pitfalls of Pollen Dating. Radiocarbon 55, 1142–1155. DOI: https://doi.org/10.1017/S0033822200048050
Newnham, R. M. – Vandergoes, M. J. – Garnett, M. H. – Lowe, D. J. – Prior, C. – Almond, P. C. 2007: Test of AMS 14C dating of pollen concentrates using tephrochronology. Journal of Quaternary Science 22, 37–51. DOI: https://doi.org/10.1002/jqs.1016
Oinonen, M. – Haggren, G. – Kaskela, A. – Lavento, M. – Palonen, V. – Tikkanen, P. 2009: Radiocarbon Dating of Iron: A Northern Contribution. Radiocarbon 51, 873–881. DOI: https://doi.org/10.1017/S0033822200056186
Olsen, J. – Heinemeier, J. – Bennike, P. – Krause, C. – Hornstrup, K. M., – Thrane, H. 2008: Characterisation and blind testing of radiocarbon dating of cremated bone. Journal of Archaeological Science 35, 791–800. DOI: https://doi.org/10.1016/j.jas.2007.06.011
Olsen, J. – Heinemeier, J. – Hornstrup, K. M. – Bennike, P. – Thrane, H. 2013: ‘Old wood’ effect in radiocarbon dating of prehistoric cremated bones?. Journal of Archaeological Science 40, 30–34. DOI: https://doi.org/10.1016/j.jas.2012.05.034
Olsen, J. – Heinemeier, J. – Lübke, H. – Lüth, F. – Terberger, T. 2010: Dietary habits and freshwater reservoir effects in bones from a Neolithic Northern German cemetery. Radiocarbon 52, 635–644. DOI: https://doi.org/10.1017/S0033822200045665
Ozga, A. T. – Ottoni, C. 2023: Dental calculus as a proxy for animal microbiomes. Quaternary International 653/654, 47–52. DOI: https://doi.org/10.1016/j.quaint.2021.06.012
Pachnerová Brabcová, K. – Krofta T. – Valášek, V. – Suchý, V. – Kundrát, P. et al. 2022a: Radiocarbon dating charcoals from historical mortars from Týřov and Pyšolec castles. Radiation Protection Dosimetry 198, 681–686. DOI: https://doi.org/10.1093/rpd/ncac119
Pachnerová Brabcová, K. – Kundrát, P. – Petrová, M. – Krofta, T. – Suchý, V. et al. 2022b: Charcoals as indicators of historical mortar age of medieval Czech castle Pyšolec. Nuclear Instruments and Methods in Physics Research B 528, 8–14. DOI: https://doi.org/10.1016/j.nimb.2022.07.015
Pancost, R. D. – van Geel, B. – Baas, M. – Damsté, J. S. S. 2000: δ13C values and radiocarbon dates of microbial biomarkers as tracers for carbon recycling in peat deposits. Geology 28, 663–666. DOI: https://doi.org/10.1130/0091-7613(2000)028<0663:CVARDO>2.3.CO;2
Philippsen, B. 2013: The freshwater reservoir effect in radiocarbon dating. Heritage Science 1, 1–19. DOI: https://doi.org/10.1186/2050-7445-1-24
Piotrowska, N. – Goslar, T. 2002: Preparation of bone samples in the Gliwice radiocarbon laboratory for AMS radiocarbon dating. Izotopes in Environmental and Health Studies 38, 267–275. DOI: https://doi.org/10.1080/10256010208033272
Piperno, D. R. – Stothert, K. E. 2003: Phytolith evidence for early Holocene Cucurbita domestication in southwest Ecuador. Science 299, 1054–1057. DOI: https://doi.org/10.1126/science.1080365
Piperno, D. R. 2006: Phytoliths: a comprehensive guide for archaeologists and paleoecologists. Rowman: Altamira.
Piperno, D. R. 2016: Phytolith radiocarbon dating in archaeological and paleoecological research: a case study of phytoliths from modern Neotropical plants and a review of the previous dating evidence. Journal of Archaeological Science 68, 54–61. DOI: https://doi.org/10.1016/j.jas.2015.06.002
Poulson, S. R. – Kuzminsky, S. C. – Scott, G. R. – Standen, V. G. – Arriaza, B. – Munoz, I. – Dorio, L. 2013: Paleodiet in northern Chile through the Holocene: extremly heavy δ15N values in dental calculus suggest a guano–derived signature?. Journal of Archaeological Science 40, 4579–4585. DOI: https://doi.org/10.1016/j.jas.2013.07.009
Reimer, P. – Austin, W. – Bard, E. – Bayliss, A. – Blackwell, P. et al. 2020: The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon 62, 725–757. DOI: https://doi.org/10.1017/RDC.2020.41
Roffet–Salque, M. – Dunne, J. – Altoft, T. D. – Casanova, E. – Cramp, J. E. L. – Smyth, J. – Whelton, H. – Evershed, R. P. 2017: From the inside out: Upscaling organic residue analyses of archaeological ceramics. Journal of Archaeological Science: Reports 16, 627–640. DOI: https://doi.org/10.1016/j.jasrep.2016.04.005
Rose, H. A. – Meadows, J. – Palstra, S. W. L. – Hamann, C. – Boudin, M. – Huels, M. 2019: Radiocarbon Dating Cremated Bone: A Case Study Comparing Laboratory Methods. Radiocarbon 61, 1581–1591. DOI: https://doi.org/10.1017/RDC.2019.70
Rutgers, L. V. – De Jong, A. F. M. – van der Borg, K. 2002: Radiocarbon dates from the Jewish catacombs of Rome. Radiocarbon 44, 541–547. DOI: https://doi.org/10.1017/S0033822200031891
Řídký, J. – Květina, P. – Limburský, P. – Končelová, M. – Burgert, P. – Šumberová, R. 2018: Big men or chiefs? Rondel builders of Neolithic Europe. Oxford: Oxbow Books. DOI: https://doi.org/10.2307/j.ctv13nb7k7
Santos, G. M. – Alexandre, A. – Southon, J. R. – Treseder, K. K. – Corbineau, R. – Reyerson, P. E. 2012: Possible source of ancient carbon in phytolith concentrates from harvested grasses. Biogeosciences 9, 1873–1884. DOI: https://doi.org/10.5194/bg-9-1873-2012
Santos, G. M. – Masion, A. – Alexandre, A. 2018: When the carbon being dated is not what you think it is: Insights from phytolith carbon research. Quaternary Science Reviews 197, 162–174. DOI: https://doi.org/10.1016/j.quascirev.2018.08.007
Sarnthein, M. – Küssner, K. – Grootes, P. M. – Ausin, B. – Eglinton, T. et al. 2020: Plateaus and jumps in the atmospheric radiocarbon record–potential origin and value as global age markers for glacial-to-deglacial paleoceanography, a synthesis. Climate of the Past 16, 2547–2571. DOI: https://doi.org/10.5194/cp-16-2547-2020
Shiroukhov, R. 2019: AMS 14C Dating of the Cremated Human Bones and Funeral Fuel of the Western Balts. In Theory and in Practice. Archaeologia Lituana 20, 40–74. DOI: https://doi.org/10.15388/ArchLit.2019.20.3
Stafford Jr., T. W. – Hare, P. E. – Currie, L. A. – Jull, A. J. T. – Donahue, D. 1991: Acclerator radiocarbon dating at the molecular level. Journal of Archaeological Science 18, 35–72. DOI: https://doi.org/10.1016/0305-4403(91)90078-4
Stott, A. W. – Berstan, R. – Evershed, R. P. – Bronk Ramsey, C. – Hedges, R. E. – Humm, M. J. 2003: Direct dating of archaeological pottery by compound–specific 14C analysis of preserved lipids. Analytical Chemistry 75, 5037–5045. DOI: https://doi.org/10.1021/ac020743y
Strömberg, C. A. – Dunn, R. E. – Crifò, C. – Harris, E. B. 2018: Phytoliths in paleoecology: analytical considerations, current use, and future directions. In: D. Croft – D. Su – S. Simpson (eds.), Methods in Paleoecology. Vertebrate Paleobiology and Paleoanthropology. Cham: Springer, 235–287. DOI: https://doi.org/10.1007/978-3-319-94265-0_12
Stuiver, M. – Polach, H. A. 1977: Reporting of 14C data. Radiocarbon 19, 355–363. DOI: https://doi.org/10.1017/S0033822200003672
Světlík, I. – Dreslerová, D. – Limburský, P. – Tomášková, L. 2007: Radiouhlík v přírodě a jeho využití pro datovací účely. Archeologické rozhledy 59, 80–94.
Světlík, I. – Jull, A. J. T. – Molnár, M. – Povinec, P. P. – Kolář, T. – Demján, P. – Pachnerova Brabcova, K. – Brychova, V. – Dreslerová, D. – Rybníček, M. – Simek, P. 2019: The best possible time resolution: How precise could a Radiocarbon dating method be?. Radiocarbon 61, 1729–1740. DOI: https://doi.org/10.1017/RDC.2019.134
Tennant, R. K. – Jones, R. T. – Brock, F. – Cook, C. – Turney, C. S. M. – Love, J. – Lee, R. 2013: A new flow cytometry method enabling rapid purification of fossil pollen from terrestrial sediments for AMS radiocarbon dating. Journal of Quaternary Science 28, 229–236. DOI: https://doi.org/10.1002/jqs.2606
Thornton, M. D. – Moran, E. D. – Celoria, F. 1970: The composition of bog butter. Science and Archaeology 2/3, 20–25.
Tchapla, A. – Mejanelle, P. – Bleton, J. – Goursaud, S. 2004: Characterisation of embalming materials of a mummy of the Ptolemaic era. Comparison with balms from mummies of different areas. Journal of Separation Science 27, 217–234. DOI: https://doi.org/10.1002/jssc.200301607
Tkáč, P. – Kolář, J. 2021: Towards New Demography Proxies and Regional Chronologies: Radiocarbon Dates from Archaeological Contexts Located in the Czech Republic Covering the Period Between 10,000 BC and AD 1250. Journal of Open Archaeology Data 9, 1–14. DOI: https://doi.org/10.5334/joad.85
Tripp, J. A. – McCullagh, J. S. O. – Hedges, R. E. M. 2006: Preparative separation of underivatized amino acids for compound–specific stable izotope analysis and radiocarbon dating of hydrolyzed bone collagen. Journal of Separation Science 29, 41–48. DOI: https://doi.org/10.1002/jssc.200500247
Tunno, I. – Zimmerman, S. R. H. – Brown, T. A. – Hassel, C. A. 2021: An Improved Method for Extracting, Sorting, and AMS Dating of Pollen Concentrates From Lake Sediment. Frontiers in Ecology and Evolution 9, 1–16. DOI: https://doi.org/10.3389/fevo.2021.668676
Urbanová, P. – Boaretto, E. – Artioli, G. 2020: The state–of–the–art of dating techniques applied to ancient mortars and binders: A review. Radiocarbon 62, 503–525. DOI: https://doi.org/10.1017/RDC.2020.43
van Klinken, G. J. – Bowles, A. D. – Hedges, R. E. M. 1994: Radiocarbon dating of peptides isolated from contaminated fossil bone collagen by collagenase digestion and reversed–phase chromatography. Geochimica et Cosmochimica Acta 58, 2543–2551. DOI: https://doi.org/10.1016/0016-7037(94)90030-2
Van Strydonck, M. 2016: Radiocarbon Dating of Cremated Bones: An Overview. In: G. Grupe – G. C. McGlynn (eds.), Isotopic Landscapes in Bioarchaeology, Berlin – Heidelberg: Springer, 69–89. DOI: https://doi.org/10.1007/978-3-662-48339-8_4
Vandergoes, M. J. – Prior, C. A. 2003: AMS Dating of Pollen Concentrates—A Methodological Study of Late Quaternary Sediments from South Westland, New Zealand. Radiocarbon 45, 479–491. DOI: https://doi.org/10.1017/S0033822200032823
Velíšek, J. – Hajšlová, J. 2009: Chemie potravin I. 3. vyd. Tábor: OSSIS.
Vondrovský, V. – Demján, P. – Dreslerová, D. 2023: Arch14CZ – Czech Archaeological Radiocarbon Database. Dostupné z: http://arch14.aiscr.cz/ [cit. 19-07-2023].
Wacker, L. – Christl, M. – Synal H. 2010: Bats: A new tool for AMS data reduction. Nuclear Instruments and Methods in Physics Research B 268, 976–979. DOI: https://doi.org/10.1016/j.nimb.2009.10.078
Warinner, C. – Hendy, J. – Speller, C. – Cappellini, E. – Fischer, R. et al. 2014a: Direct evidence of milk consumption from ancient human dental calculus. Scientific Reports 4, 1–6. DOI: https://doi.org/10.1038/srep07104
Warinner, Ch. – Rodrigues, J. F. M. – Vyas, R. – Trachsel, Ch. – Shved, N. – Grossmann, J. – Radini, A. – Hancock, Y. – Tito, R. Y. – Fiddyment, S. 2014b: Pathogens and host immunity in the ancient human oral cavity. Nature Genetic 46, 336–346. DOI: https://doi.org/10.1038/ng.2906
Warinner, Ch. – Speller, C. – Collins, M. 2014c: A new era in palaeomicrobiology: prospects for ancient dental calculus as a long–term record of the human oral microbiome. Philosophical Transactions of the Royal Society B 370, 1–11. DOI: https://doi.org/10.1098/rstb.2013.0376
Wesolowski, V. – de Souza, S. M. F. M. – Reinhard, K. J. – Ceccantini, G. 2010: Evaluating microfossil content of dental calculus from Brazilian sambaquis. Journal of Archaeological Science 37, 1326–1338. DOI: https://doi.org/10.1016/j.jas.2009.12.037
Wolska, B. 2020: Applying isotope analyses of cremated human bones in archaeological research – a review. Analecta Archaeologica Ressoviensia 15, 7–16. DOI: https://doi.org/10.15584/anarres.2020.15.1
Wood, R. 2015: From revolution to convention: the past, present and future of radiocarbon dating. Journal of Archaeological Science 56, 61–72. DOI: https://doi.org/10.1016/j.jas.2015.02.019
Yates A. B. – Smith, A. M. – Bertuch, F. 2015: Residue radiocarbon AMS dating review and preliminary sampling protocol suggestions. Journal of Archaeological Science 61, 223–234. DOI: https://doi.org/10.1016/j.jas.2015.06.011
Yuan, S. – Wu, X. – Liu, K. – Guo, Z. – Cheng, X. – Pan, Y. – Wang, J. 2007: Removal of Contaminants from Oracle Bones During Sample Pretreatment. Radiocarbon 49, 211–216. DOI: https://doi.org/10.1017/S0033822200042132
Zazzo, A. – Saliège, J. F. – Lebon, M. – Lepetz, S. – Moreau, C. – 2012: Radiocarbon Dating of Calcined Bones: Insights from Combustion Experiments Under Natural Conditions. Radiocarbon 54, 855–866. DOI: https://doi.org/10.1017/S0033822200047500
Zazzo, A. – Saliège, J. F. – Person, A. – Boucher, H. 2009: Radiocarbon Dating of Calcined Bones: Where Does the Carbon Come from?. Radiocarbon 51, 601–611. DOI: https://doi.org/10.1017/S0033822200055958
Zuo, X. – Lu, H. – Gu, Z. 2014: Distribution of soil phytolith–occluded carbon in the Chinese Loess Plateau and its implications for silica–carbon cycles. Plant and Soil 374, 223–232. DOI: https://doi.org/10.1007/s11104-013-1850-6
Zuo, X. – Lu, H. – Jiang, L. – Zhang, J. –Yang, X. – Huan, X. – Wu, N. 2017: Dating rice remains through phytolith carbon–14 study reveals domestication at the beginning of the Holocene. PNAS 114, 6486–6491. DOI: https://doi.org/10.1073/pnas.1704304114
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Jarmila Bíšková, Veronika Brychová, Peter Demján, Dagmar Dreslerová, Alžběta Frank Danielisová, Kristýna Hošková, David John, Nikola Koštová, Petr Limburský, Mihály Molnár, Alice Moravcová, Kateřina Pachnerová Brabcová, Markéta Petrová, Ivo Světlík, Jiří Šneberger, Josef Tecl, Vojtěch Valášek
This work is licensed under a Creative Commons Attribution 4.0 International License.