
Published 01-02-2023
Keywords
- archaeothanatology,
- bone bioerosion,
- Corded Ware culture,
- microbiome,
- central Moravia
- machine learning ...More
How to Cite
Copyright (c) 2022 Anna Pankowská

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
The reconstruction of the grave environment is a key element in the interpretation of the burial rite. The methods of field anthropology and histotaphonomy can be useful in gaining a better understanding of the micro-environment in which the dead body decomposed. Based on the example of five graves from the period of the Corded Ware culture, the study aims to determine the conditions in which the bodies of the deceased were found, or how they were postmortem treated. The skeletal remains of four individuals bore traces of deposition in a hollow space. A histological analysis revealed that the decomposition of soft tissues in these individuals must either have been arrested or, in contrast, highly accelerated, since the bone microstructure was not damaged by microorganisms. The decomposition of the bodies could have been accelerated in an open space such as a partially sunken grave with a construction. Alternatively, decomposition could have occurred as the result of higher temperatures in the form of heat or smoke, but also due to a repeatedly waterlogged environment. Specific traces exist on skeletal remains for all of these possibilities. A complex taphonomic analysis of the skeletal remains brings new and more detailed information about the circumstances of the burial, significantly expanding the possibilities of interpreting the concept of death in the past.
Downloads
References
- Baron, J. – Furmanek, M. – Hałuszko, A. – Kufel-Diakowska, B. 2019: Differentiation of burial practices in the Corded Ware Culture. The example of the Magnice site in SW Poland. Praehistorische Zeitschrift 93, 169–184. DOI: https://doi.org/10.1515/pz-2018-0009
- Bell, L. S. 1990: Palaeopathology and diagenesis: an SEM evaluation of structural changes using backscattered electron imaging. Journal of Archaeological Science 17, 85–102. DOI: https://doi.org/10.1016/0305-4403(90)90016-X
- Bell, L. S. – Skinner, M. F. – Jones, S. J. 1996: The speed of post mortem change to the human skeleton and its taphonomic significance. Forensic Science International 82, 129–140. DOI: https://doi.org/10.1016/0379-0738(96)01984-6
- Bello, S. M. – Thomann, A. – Signoli, M. – Dutour, O. – Andrews, P. 2006: Age and sex bias in the reconstruction of past population structures. American Journal of Physical Anthropology 129, 24–38. DOI: https://doi.org/10.1002/ajpa.20243
- Booth, T. 2017: The Rot Sets In Low-Powered Microscopic Investigation of Taphonomic Changes to Bone Microstructure and its Application to Funerary Contexts. In: T. Thompson – D. Errickson (eds.), Human Remains: Another Dimension: Academic Press, 7–28. DOI: https://doi.org/10.1016/B978-0-12-804602-9.00003-5
- Booth, T. J. 2016: An Investigation Into the Relationship Between Funerary Treatment and Bacterial Bioerosion in European Archaeological Human Bone. Archaeometry 58, 484–499. DOI: https://doi.org/10.1111/arcm.12190
- Booth, T. J. – Chamberlain, A. T. – Pearson, M. P. 2015: Mummification in Bronze Age Britain. Antiquity 89, 1155–1173. DOI: https://doi.org/10.15184/aqy.2015.111
- Booth, T. J. – Madgwick, R. 2016: New evidence for diverse secondary burial practices in Iron Age Britain: A histological case study. Journal of Archaeological Science 67, 14–24. DOI: https://doi.org/10.1016/j.jas.2016.01.010
- Černý, V. 1995: Význam tafonomických procesů při studiu pohřebního ritu. Archeologické rozhledy 47, 301–313.
- Chadefaux, C. – Reiche, I. 2009: Archaeological Bone from Macro- to Nanoscale: Heat-Induced Modifications at Low Temperatures. Journal of Nano Research 8, 157–172. DOI: https://doi.org/10.4028/www.scientific.net/JNanoR.8.157
- Child, A. M. 1995a: Microbial Taphonomy of Archaeological Bone. Studies in Conservation 40(1), 19–30. DOI: https://doi.org/10.1179/sic.1995.40.1.19
- Child, A. M. 1995b: Towards an understanding of the microbial decomposition of archaeological bone in the burial environment. Journal of Archaeological Science 22, 165–174. DOI: https://doi.org/10.1006/jasc.1995.0018
- Delannoy, Y. – Colard, T. – Cannet, C. – Mesli, V. – Hédouin, V. – Penel, G. – Ludes, B. 2018: Characterization of bone diagenesis by histology in forensic contexts: a human taphonomic study. International Journal of Legal Medicine 132, 219–227. DOI: https://doi.org/10.1007/s00414-017-1699-y
- Duday, H. 2009: The archaeology of the dead. Lectures in Archaeothanatology. Studies in Funerary Archaeology Vol. 3. Oxford and Oakville: Oxbow. DOI: https://doi.org/10.2307/j.ctt1cd0pkv
- Duday, H. – Courtaud, P. – Crubezy, E. – Sellier, P. – Tillier, A-M. 1990: L'Anthropologie «de terrain»: reconnaissance et interprétation des gestes funéraires. Bulletins et Mémoires de la Société d'Anthropologie de Paris 2, 29–49. DOI: https://doi.org/10.3406/bmsap.1990.1740
- Fernández-Jalvo, Y. – Andrews, P. – Pesquero, D. – Smith, C. – Marín-Monfort, D. – Sánchez, B. – Geigl, E.-M. – Alonso, A. 2010: Early bone diagenesis in temperate environments: Part I: Surface features and histology. Palaeogeography, Palaeoclimatology, Palaeoecology 288, 62–81. DOI: https://doi.org/10.1016/j.palaeo.2009.12.016
- Fernández-Jalvo, Y. – Andrews, P. 2016: Atlas of Taphonomic Identifications: 1001+ Images of Fossil and Recent Mammal Bone Modification. New York – London: Springer Dordrecht.. DOI: https://doi.org/10.1007/978-94-017-7432-1
- García-López, Z. – Martínez Cortizas, A. – Álvarez-Fernández, N. – López-Costas, O. 2022: Understanding Necrosol pedogenetical processes in post-Roman burials developed on dunes sands. Scientific Reports 12, 10619. DOI: https://doi.org/10.1038/s41598-022-14750-5
- Hackett, C. J. 1981: Microscopical Focal Destruction (Tunnels) in Exhumed Human Bones. Medicine, Science and the Law 21, 243–265. DOI: https://doi.org/10.1177/002580248102100403
- Hadrava, V. 2017: Nálezová zpráva Hulín - Pravčice 1 "U obrázku" Nálezová zpráva v archivu Archeologického ústavu AV ČR, Brno, č. M-TX-201900100.
- Hałuszko, A. – Kadej, M. – Gmyrek, G. – Guziński, M. 2022: Let’s make a mess, maybe no one will notice. The impact of bioturbation activity on the urn fill condition. PLoS One 17, e0274068. DOI: https://doi.org/10.1371/journal.pone.0274068
- Harris, N. J. – Tayles, N. 2012: Burial containers – A hidden aspect of mortuary practices: Archaeothanatology at Ban Non Wat, Thailand. Journal of Anthropological Archaeology 31, 227–239. DOI: https://doi.org/10.1016/j.jaa.2012.01.001
- Hedges, R. E. M. – Millard, A. R. – Pike, A. W. G. 1995: Measurements and Relationships of Diagenetic Alteration of Bone from Three Archaeological Sites. Journal of Archaeological Science 22, 201–209. DOI: https://doi.org/10.1006/jasc.1995.0022
- Hollund, H. I. – Blank, M. – Sjögren, K-G. 2018: Dead and buried? Variation in post-mortem histories revealed through histotaphonomic characterisation of human bone from megalithic graves in Sweden. PLoS One 13, e0204662. DOI: https://doi.org/10.1371/journal.pone.0204662
- Hollund, H. I. – Jans, M. M. E. – Collins, M. J. – Kars, H. – Joosten, I. – Kars, S. M. 2012: What Happened Here? Bone Histology as a Tool in Decoding the Postmortem Histories of Archaeological Bone from Castricum, The Netherlands. International Journal of Osteoarchaeology 22, 537–548. DOI: https://doi.org/10.1002/oa.1273
- Hyde, E. R. – Haarmann, D. P. – Lynne, A. M. – Bucheli, S. R. – Petrosino, J. F. 2013: The living dead: bacterial community structure of a cadaver at the onset and end of the bloat stage of decomposition. PLoS One 8, e77733. DOI: https://doi.org/10.1371/journal.pone.0077733
- Jans, M. 2008: Microbial bioerosion of bone - A review. In: M. Wisshak – L. Tapanila (eds.), Current Developments in Bioerosion. Erlangen Earth Conference Series. Berlin, Heidelberg: Springer, 397–413. DOI: https://doi.org/10.1007/978-3-540-77598-0_20
- Jans, M. M. E. – Kars, H. – Nielsen–Marsh, C. M. – Smith, C. I. – Nord, A. G. – Arthur, P. – Earl, N. 2002: In situ preservation of archaeological bone: a histological study within a multidisciplinary approach. Archaeometry 44, 343–352. DOI: https://doi.org/10.1111/1475-4754.t01-1-00067
- Jans, M. M. E. – Nielsen-Marsh, C. M. – Smith, C. I. – Collins, M. J. – Kars, H. 2004: Characterisation of microbial attack on archaeological bone. Journal of Archaeological Science 31, 87–95. DOI: https://doi.org/10.1016/j.jas.2003.07.007
- Knüsel, C. J. 2014: Crouching in fear: Terms of engagement for funerary remains. Journal of Social Archaeology 14, 26–58. DOI: https://doi.org/10.1177/1469605313518869
- Kolář, J. 2018: Archaeology of local interactions. Social and spatial aspects of the corded ware communities in Moravia. Studien zur Archäologie Europas 31. Bonn: Dr. Rudolf Habelt GmbH.
- Kolář, J. – Dobisíková, M. – Dreslerová, G. – Drozdová, E. – Fojtová, M. – Hložek, M. – Gregerová, M. – Přichystal, A. – Urbanová, K. – Wagenknechtová, M. 2011: Kultura se šňůrovou keramikou v povodí říčky Hané na střední Moravě. Pohřební areály z prostoru dálnice D1 v úseku Vyškov–Mořice a dalších staveb. Pravěk Supplementum 23, Brno: Ústav archeologické památkové péče.
- Mickleburgh, H. L. – Wescott, D. J. 2018: Controlled experimental observations on joint disarticulation and bone displacement of a human body in an open pit: Implications for funerary archaeology. Journal of Archaeological Science: Reports 20, 158–167. DOI: https://doi.org/10.1016/j.jasrep.2018.04.022
- Miszkiewicz, J. – Mahoney, P. 2015: Ancient Human Bone Microstructure in Medieval England: Comparisons between Two Socio-Economic Groups. Anatomical record (Hoboken) 299, 42–59. DOI: https://doi.org/10.1002/ar.23285
- Nicholson, R. A. 1998: Bone Degradation in a Compost Heap. Journal of Archaeological Science 25, 393–403. DOI: https://doi.org/10.1006/jasc.1997.0208
- Pankowská, A. – Žižková, A. – Kapusta, J. – Moník, M. 2022: Variation in human bone bioerosion during the Late Eneolithic/Bronze Age in Moravia (Czech Republic): A novel approach to BSE-SEM image quality and quantity assessment. Archaeometry 65, 370–390. DOI: https://doi.org/10.1111/arcm.12816
- Papakonstantinou, N. – Booth, T. – Triantaphyllou, S. 2020: Human remains under the microscope of funerary taphonomy: Investigating the histological biography of the decaying body in the prehistoric Aegean. Journal of Archaeological Science: Reports 34, 102654. DOI: https://doi.org/10.1016/j.jasrep.2020.102654
- Peška, J. 2013: Morava na konci eneolitu. Olomouc: Akademické nakladatelství CERM.
- Piepenbrink, H. 1986: Two examples of biogenous dead bone decomposition and their consequences for taphonomic interpretation. Journal of Archaeological Science 13, 417–430. DOI: https://doi.org/10.1016/0305-4403(86)90012-9
- Piepenbrink, H. 1989: Examples of chemical changes during fossilisation. Applied Geochemistry 4, 273–280. DOI: https://doi.org/10.1016/0883-2927(89)90029-2
- Průchová, E. – Chroustovský, L. 2009: Vícečetný pohřeb ze starší doby bronzové z Velkých Přílep. příspěvek ke studiu tafonomie, vzniku a účelu pohřebního komplexu. Archeologické rozhledy 61, 77–100.
- Smith, M. – Brickley, M. 2009: People of the long barrows: life, death and burial in the earlier Neolithic. Birmingham: The History Press.
- Šín, L. 2021a: Bystročice (okr. Olomouc) – U Topolánky. Parcela č. 362/14. Hrob H2, pohřeb 807. 10/2020. 60064. Antropologická zpráva. Olomouc: Archeologické centrum Olomouc.
- Šín, L. 2021b: Novostavba rodinného domu s garáží (Bystročice, Olomouc). Nálezová zpráva v archivu Archeologického ústavu AV ČR, Brno, č. M-TX-202100595.
- Sládek, V. – Kavánová, B. 2003: Statistické hodnocení tafonomických, ostearcheologických a antropologických parametrů pohřebiště u 12. kostela v Mikulčicích. In: N. Profantová – B. Kavánová eds., Mikulčice – pohřebiště u 6. a 12. kostela. Brno: Spisy Archeologického ústavu AV ČR 22, 435–460.
- Smith, C. I. – Nielsen–Marsh, C. M. – Jans, M. M. E. – Arthur, P. – Nord, A. G. – Collins, M. J. 2002: The strange case of Apigliano: early ‘fossilization’ of medieval bone in southern Italy. Archaeometry 44, 405–415. DOI: https://doi.org/10.1111/1475-4754.t01-1-00073
- Trueman, C. N. – Martill, D. M. 2002: The long–term survival of bone: the role of bioerosion. Archaeometry 44, 371–382. DOI: https://doi.org/10.1111/1475-4754.t01-1-00070
- Tuccia, F. – Giordani, G. – Vanin, S. 2022: State of the art of the funerary archaeoentomological investigations in Italy. Archaeological and Anthropological Sciences 14, 70. DOI: https://doi.org/10.1007/s12520-022-01524-3
- Végh, E. I. – Czermak, A. – Márquez-Grant, N. – Schulting, R. J. 2021: Assessing the reliability of microbial bioerosion features in burnt bones: A novel approach using feature-labelling in histotaphonomical analysis. Journal of Archaeological Science: Reports 37, 102906. DOI: https://doi.org/10.1016/j.jasrep.2021.102906
- White, L. – Booth, T. J. 2014: The origin of bacteria responsible for bioerosion to the internal bone microstructure: Results from experimentally-deposited pig carcasses. Forensic Science International 239, 92–-102. DOI: https://doi.org/10.1016/j.forsciint.2014.03.024